Ferrocene-containing compounds as combustion catalysts and solid fuel modifiers

Cover Page

Cite item

Full Text

Abstract

Low pressure profile and stable burning rate are important and necessary characteristics of high-quality solid fuels. Achieving their optimal values is accomplished by incorporating combustion catalysts. There are several types of combustion catalysts, such as metal nanoparticles, oxides, transition metal chelates, and catalytic mixtures based on them. Among catalysts, ferrocene and its compounds hold a special place. They are widely used in the aerospace industry due to their superior microscopic homogeneity, proper ignitability of rocket fuel, and compatibility with organic binders. However, ferrocene compounds tend to migrate within the composite, leading to matrix degradation, reduced storage life, and shorter operational lifespan of the fuels. Polymeric ferrocene catalysts represent a new generation of catalysts that retain activity while exhibiting reduced migration tendencies. They have a polymeric structure in which the ferrocene group can be placed in the main or side chain. In this study, in addition to reviewing current knowledge on polymeric ferrocene combustion catalysts, synthesis methods and their application results were examined, as well as their migration in fuels compared to other catalysts. The conducted research demonstrated that polymeric ferrocene catalysts are synthesized through free-radical and graft polymerization, resulting in dendrimer-like polymers. Furthermore, the use of a hyperbranched polymeric ferrocene catalyst, compared to a ferrocene catalyst bound to a small molecular group, simultaneously reduced the migration rate by 90%. The iron content in the catalyst, the polymer's molecular weight, the placement of ferrocene in the polymer structure, and the degree of linearity of the polymeric structure are among the most important factors influencing the efficiency of these catalysts.

About the authors

Gh. R Khabrat

Empress Catherine II Saint Petersburg Mining University

Email: khabrat2022@gmail.com
ORCID iD: 0009-0002-5833-8752

Y. I Puzin

Empress Catherine II Saint Petersburg Mining University

Email: ppuziny@mail.ru
ORCID iD: 0000-0003-0756-2666

References

  1. Gainful., Bin., Wang L., Salem M., Khalid H., Abbasid N.M., Aram M. Synthesis, mechanism of combustion rate catalysis of ferrocene-based compounds. Applied Organometallic Chem. 2014. 28. P. 567 – 575.
  2. Valdebenito C., Gaete J., Osorio C., Dibdalli Y., Norambuena Á., Lecaros N., ... & Morales-Verdejo, C. Evaluation of Mono and Bimetallic Ferrocene-Based 1, 2, 3-Triazolyl Compounds as Burning Rate Catalysts for Solid Rocket Motor. 2023. ACS omega. 8 (38). P. 35242 – 35255. DIO: org/10.1021/acsomega
  3. Gao X., Li J., Luo Y., Li C., Bi F., Zhang W., & Gao Z. Ionic ferrocenyl compounds containing polycyano anions. Synthesis, structures, and effects on thermal decomposition of core components of solid propellants. Zeitschrift für anorganische und allgemeine Chemie. 2015. 641 (2). P. 475 – 482. doi: 10.1002/zaac.201400467
  4. Pang W., Li Y., DeLuca L.T., Liang D., QinZ., Liu X., Xu H., Fan X. Effect of metalnano-powders on the performance of solid rocket propellants: a review. Nanomaterials. 2021. 11 (10). P. 2749. DOI: org/10.3390/nano11102749
  5. Elbasuney S., Yehia M. Ferric oxide colloid: a novel nano-catalyst for solid propellants. J. Inorganic and Organometallic polymers and materials. 2020. 30 (3). P. 706 – 713. DOI: org/10.1007/s10904-019-01339-1
  6. Chukaeva M.A., Matveeva V.A., Sverchkov I.P. Complex processing of high-carbon ash and slag waste. Journal of Mining Institute. 2022. 253. P. 97 – 104. doi: 10.31897/PMI.2022.5.
  7. Amin B. U., Yu H., Wang L., Fahad S., Nazir A., Haq F., ... & Liang R.). Synthesis and anti-migration studies of ferrocene-based amides as burning rate catalysts. Journal ofInorganic and Organometallic Polymers and Materials. (2021. 31, P. 2511-2520.
  8. DIO:.org/10.1007/s10904-020-01861-7
  9. Ketova Y.A., Bai B., Khizhnyak G. P., Gladkikh Y. A., Galkin , S. V. Testing of preformed particles polymer gel technology on core filtration models to limit water inflows. Journal of Mining Institute. 2020. 241. P. 91 – 96. DOI: i.org/10.31897/pmi.2020.1.91
  10. Wang L Yu.H., Salem M., Aram M., Abbasid N.M., Khalid H., Chen Y. Ferrocenebased polyethylene imines for burning rate catalysts. New Journal of Chemistry. 2016. 40 (4). P. 3155 – 3163. DOI: org/10.1039/C5NJ03112E
  11. Ritter H., Mondrxik B. E., Rehahn M., & Gallei M. Free radical homopolymetriztion of A vinylfrrocent cyclodextion complex in water. Beilstein Journal of Organic Chemistry. 2010. P. 60-6. P. 1 – 5. DOI: i.org/10.3762/bjoc.6.60
  12. Kondrasheva N.K., Eremeeva A.M. Production of biodiesel fuel from vegetable raw materials. Journal of Mining Institute. 2023. 260. P. 248 – 256. doi: 10.31897/PMI.2022.15.
  13. Chudakova M.V., Ovchinnikov K.A., Ulyanov D.N., Kunakova A.M., Saifutdinova L.R., Pimenov A.A., Maximov A.L. Carbon dioxide corrosion inhibitors: current state of research and development. Journal of Mining Institute. 2025. 271. P. 3 – 21.
  14. Rahman E.U., Khan A., Humayun M., Khan M., Shah N., Rehman N., ... Bououdina M. Preparation and characterization of hydroxyl-terminated polybutadiene graft ferrocene based composite. Journal of Polymer Research. 2024. 31 (12). P. 362. DIO:org/10.1007/s10965-024-04204-z.
  15. Takahashi S., Anzai J.I. Recent progress in ferrocenemodified thin films and nanoparticles for biosensors. Materials. 2013. 6 (12). P. 5742 – 5762. DOI:org/10.3390/ma6125742
  16. Kuzin E.N., Mokrushin I.G., Kruchinina N.E. Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates. Journal of Mining Institute. 2023. 264. P. 886 – 894. doi: 10.31897/PMI.2023.15
  17. Morenov V., Leusheva E., Lavrik A., Lavrik A., Buslaev G. Gas-Fueled Binary Energy System with Low-Boiling working fluid for enhanced power generation. Energies. 2022. 15 (7). P. 25 – 51. DOI: org/10.3390/en15072551
  18. Kuzin E.N. Preparation and use of complex titanium-containing coagulant from quartz-leucoxene concentrate. Journal of Mining Institute. 2024. 267. P. 413 – 420.
  19. Buslaev G., Lavrik A., Lavrik A., & Tcvetkov. Hybrid system of hydrogen generation by water electrolysis and methane partial oxidation. International Journal of Hydrogen Energy. 202). 48 (63). P. 24166 – 24179. DOI:org/10.1016/j.ijhydene.2023.03.098.
  20. Saravanakumar D., Sengottuvelan N., Narayanan V., Kandaswamy M., Varghese T.L. Burning-rate enhancement of a high-energy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder. Journal of Applied Polymer Science. 2011. 119. P. 2517 – 2524. doi: 10.1002/app.32859
  21. Loseva A.V., Petrakov D.G. Development of composition of breaker fluid of biopolymer drilling mud for conditions of Western Siberian fields. In the book: Neftyanaya stolitsa. 5th International Youth Scientific and Practical Forum. Abstracts. Surgut: Izdvo "Centre for Scientific and Technical Solutions (ANO CNTR)". 2022. P. 109 – 110.
  22. Valerievna K.E., Vladimirovna Z.O., Yurievich B. VInvolvement of products of chemical processing of polymer waste in the composition of building materials. Egyptian Journal of Petroleum. 2024. 33 (3). P. 441 – 449. DOI:org/10.62593/2090-2468.1039
  23. Zimina D.A., Zhapkhandaev C.A., Petrov A.A. Analysis of the effect of nanosilicates on the strength and porosity of cement stone. Key Engineering Materials. 2020. 854. P. 175 – 181. DOI: https://www.scientific.net/KEM.854.175
  24. Ksenia I., Smyshlyaeva K.I., Rudko V.A. Povarov V.G., Shaidulina A.A., Efimov I.I., Gabdulkhakov R.I., Gabdulkhakov R.R., Pyagay I.N., Speight J.G. Influence of asphaltenes on the low-sulphur residual marine fuels. Journal of Marine Science and Engineering. (2021). 9 (11). P. 1 – 13. DOI: https: /2077-1312/9/11/1235
  25. Shaidulina A.A., Efimov I.I., Gabdulkhakov R.R., Pyagay I.N., Speight J.G. 2021. Influence of asphaltenes on the low-sulphur residual marine fuels’ stability. Journal of Marine Science and Engineering, Т 9. № 11. P. 1 – 13. DOI: 2077-1312/9/11/1235
  26. Khabrat Gh.R., Puzin Yu.I. Methods for preventing ferrocene catalyst migration into solid fuels. J. Sib. Fed. Univ. Eng. & Technol. 2024. 17 (7). P. 888 – 909.
  27. Urcheva Y.A., Kholodnov V.A., Syroezhko A.M., Vasiliev V.V., Salamatova E.V., Ismailov A.M., Lebedeva M.Y. Compromise preference evaluation of styrene-butadiene-styrene type polymers used in the production of polymer-bitumen binder using fuzzy sets. Izvestiya St. Petersburg State Technological Institute (Technical University). 2020. 55. P. 97 – 102. doi: 10.36807/1998-9849-2020-55-81-97-102
  28. Cho B.S., Noh S.T. Synthesis and thermal properties of ferrocenemodified poly (epichlorohydrinco-2-(methoxymethyl) oxirane). Macromolecular Research. 2013. 21. P. 221 – 227. DOI: org/10.1002/masy.19890290114.
  29. Xiao F., Yu X., Feng F., Sun X., Wu X., & Luo Y. Investigation of the redox property, migration and catalytic performance of ferrocenemodified hyper branched poly (amine) ester. Journal of Inorganic and Organometallic Polymers and Materials. 2013. 23. P. 315 – 324. DOI: org/10.1002/ (SICI) 1099-0518(19991115)37
  30. Karapetyan K.G., Dorosh I.V., Zgonnik P.V., Korshunov A.D., Perini A.I. Sorbents based on foamed phosphate glass for collection of oil products from contaminated soils and water surfaces. Proceedings of Tomsk Polytechnic University. Engineering of georesources. 2024. 335 (8). P. 227 – 240. doi: 10.18799/24131830/2024/8/4484
  31. Xiao F., Feng F., Li L., Zhang D. Investigation on ultraviolet absorption properties, migration, and catalytic performances of ferrocene-modified hyper-branched polyesters. Propellants. 2013. 38 (3). P. 358 – 365. DOI: org/10.1002/prep.201200126
  32. Zhao H., Gu L., Chen S., Bian Z. Synthesis, complexation of 1, 2, 3(NH) triazolylferrocene derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate. 2013. RSC advances. 3 (43). P. 19929 – 19932. DOI: org/10.1039/C3RA43117G
  33. Amin B.U., Yu H., Wang L., Fahad S., Nazir A., Haq, F., Liang R. Synthesis and antimigration studies of ferrocenebased amides as burning rate catalysts. Journal of Inorganic and Organometallic Polymers and Materials. 2021. 31. P. 2511 – 2520. DOI: /10.1007/s10904-020-01861-7
  34. Lai Z. M., Ye H.M., Wan Q., Xie L.L., Bai S., Yuan Y.F. Synthesis, crystal structure and properties of benzimidazole-bridged dinuclear ferrocenyl derivatives. Journal of Molecular Structure. 2014. 1059. P. 33 – 39. DOI:org/10.1016/j.molstruc.2013.11.034
  35. Gao Y., Li H., Ke C., Xie L., & Yuan, Y. Design and synthesis of combustion catalysts bearing nitrogenous heterocyclic polynuclear ferrocenyl derivatives. Chem Propellants Polym Mater. 2010. 8. P. 34 – 37. DOI: org/10.1080/10406638.2023.2167215
  36. Cheremisina O.V., Balandinsky D.A., Gorbacheva A.A., Lysenko M.R., Yinzhou L. Physicochemical features of action of ethoxylated esters of phosphoric acid with different degree of ethoxylation in conditions of froth flotation of apatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. P. 135 – 144. DOI org/10.1016/j.colsurfa.2024.13597.
  37. Shojaee Barjoee S., Rodionov V., Vaziri Sereshk A.M. Noise climate assessment in ceramic industries (Iran) using acoustic indices and its control solutions. Advances in Environmental Technology. 2025. 11 (1). P. 91 – 115. DOI: https://creativecommons.org/licenses/by/4.0/

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).