Structure formation of composite materials based on technogenic soil modified by additives of high-molecular compounds
- Authors: Pankov P.P1, Bespolitov D.V1, Konovalova N.A1, Razmakhnin K.K1, Shavanov N.D1
-
Affiliations:
- Transbaikal Institute of Railway Transport
- Issue: Vol 8, No 2 (2025)
- Pages: 35-47
- Section: Articles
- URL: https://journals.rcsi.science/2618-7183/article/view/379632
- DOI: https://doi.org/10.58224/2618-7183-2025-8-2-3
- ID: 379632
Cite item
Full Text
Abstract
About the authors
P. P Pankov
Transbaikal Institute of Railway Transport
Email: zabizht_engineering@mail.ru
ORCID iD: 0009-0002-7319-0792
D. V Bespolitov
Transbaikal Institute of Railway Transport
Email: zabizht_engineering@mail.ru
ORCID iD: 0009-0004-8682-6600
N. A Konovalova
Transbaikal Institute of Railway Transport
Email: konovalovanatasha@rambler.ru
ORCID iD: 0000-0001-7589-9821
K. K Razmakhnin
Transbaikal Institute of Railway Transport
Email: zabizht_engineering@mail.ru
ORCID iD: 0000-0003-2944-7642
N. D Shavanov
Transbaikal Institute of Railway Transport
Email: zabizht_engineering@mail.ru
ORCID iD: 0009-0001-6430-2759
References
- Kasemodel M.C. Sakamoto I.K., Varesche M.B.A., Rodrigues V.G.S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment. 2019. 675. Р. 367 – 379. doi: 10.1016/j.scitotenv.2019.04.223
- Matinde E., Simate G.S., Ndlovu S. Mining and metallurgical wastes: A review of recycling and re-use practices. Journal of the Southern African Institute of Mining and Metallurgy. 2018. 118(8). Р. 825 – 844. doi: 10.17159/2411-9717/2018/v118n8a5
- Brooks S.J., Escudero-Onate C., Lillicrap A.D. An ecotoxicological assessment of mine tailings from three Norwegian mines. Chemosphere. 2019. 233. P. 818 – 827. doi: 10.1016/j.chemosphere.2019.06.003
- García-Lorenzo M.L., Marimón J., Navarro-Hervás M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Molina-Ruiz J. Impact of acid mine drainages on surficial wasters of an abandoned mining site. Environmental Science and Pollution Research. 2016. 23 (7). P. 6014 – 6023. doi: 10.1007/s11356-015-5337-2
- Krechetov P., Chernitsova O., Sharapova A., Terskaya E. Technogenic geochemical evolution of chernozems in the sulfur coal mining areas. Journal of Soils and Sediments. 2019. 19. P. 3139 – 3154. doi: 10.1007/s11368-018-2010-7
- Shi P., Zhang Y., Hu Z., Ma K., Wang H., Chai T. The response of soil bacterial communities to mining subsidence in the west China Aeolian sand area. Applied Soil Ecology. 2017. 121. P. 1 – 10. doi: 10.1016/j.apsoil.2017.09.020
- Volokitina I., Kolesnikov A., Fediuk R., Klyuev S., Sabitov L., Volokitin A., Zhuniskaliyev T., Kelamanov B., Yessengaliev D., Yerzhanov A., Kolesnikova O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials. 2022. 15 (7). P. 2584.
- Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
- Fu Z., Xi S. The effects of heavy metals on human metabolism. Toxicology mechanisms and methods. 2019. 30 (3). P. 167 – 176. doi: 10.1080/15376516.2019.1701594
- El Machi A., Berdai Y., Mabroum S., Safhi A.E.M., Taha Y., Benzaazoua M., Hakkou R. Recycling of Mine Wastes in the Concrete Industry: A Review. Buildings. 2024. 14(6). P. 1508. doi: 10.3390/buildings14061508
- El Machi A., Hakkou R. Implementation of Circular Economy Between Mining and Construction Sectors: A Promising Route to Achieve Sustainable Development Goals. Sustainable Structures and Buildings; Springer: Berlin/Heidelberg, Germany. 2024. P. 51 – 63. doi: 10.1007/978-3-031-46688-5_4
- Yu H., Zahidi I., Liang D. Sustainable Porous-Insulation Concrete (SPIC) Material: Recycling Aggregates from Mine Solid Waste, White Waste and Construction Waste. Journal of Materials Research and Technology. 2023. 23. P. 5733 – 5745. doi: 10.1016/j.jmrt.2023.02.181
- Garcia-Troncoso N., Baykara H., Cornejo M.H., Riofrio A., Tinoco-Hidalgo M., Flores-Rada J. Comparative Mechanical Properties of Conventional Concrete Mixture and Concrete Incorporating Mining Tailings Sands. Case Studies in Construction Materials. 2022. 16. e01031. doi: 10.1016/j.cscm.2022.e01031
- Benahsina A., El Haloui Y., Taha Y., Elomari M., Bennouna M.A. Natural Sand Substitution by Copper Mine Waste Rocks for Concrete Manufacturing. Journal of building engineering. 2022. 47. 103817. doi: 10.1016/j.jobe.2021.103817
- Oubaha S., El Machi A., Mabroum S., Taha Y., Benzaazoua M., Hakkou R. Recycling of Phosphogypsum and Clay By-Products from Phosphate Mines for Sustainable Alkali-Activated Construction Materials. Construction and Building Materials. 2024. 411. 134262. doi: 10.1016/j.conbuildmat.2023.134262.
- González J.S., Boadella I.L., Gayarre F.L., Pérez C.L.C., López M.S., Stochino F. Use of Mining Waste to Produce Ultra-High-Performance Fibre-Reinforced Concrete. Materials. 2020. 13. doi: 10.3390/ma13112457.
- Yu H., Zahidi I., Fai C.M., Liang D., Madsen D.Ø. Mineral waste recycling, sustainable chemical engineering, and circular economy. Results in Engineering. 2024. 21. 101865. doi: 10.1016/j.rineng.2024.101865
- Kongar-Syuryun Ch., Ivannikov A., Khayrutdinov A., Tyulyaeva Y. Geotechnology using composite materials from man-made waste is a paradigm of sustainable development. Materials today: proceedings. 2021. 38(4). P. 2078-2082. doi: 10.1016/j.matpr.2020.10.145.
- Mikheeva I.V., Androkhanov V.A. Physical properties of technosols at brown coal mine wastes in Eastern Siberia. Soil and Tillage Research. 2022. 217. P. 105264. doi: 10.1016/j.still.2021.105264
- Lozinsky V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russian Chemical Reviews. 1998. 67 (7). P. 573 – 586.
- Lozinsky V.I., Okay O. Basic principles of cryotropic gelation. Advances in Polymer Science. 2014. 263. P. 49 – 102. doi: 10.1007/978-3-319-05846-7_2.
- Lozinsky V.I., Damshkaln L.G., Shaskol'Skii B.L., Babushkina T.A., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems: 27. Physicochemical properties of poly(vinyl alcohol) cryogels and specific features of their macroporous morphology. Colloid Journal. 2007. 69 (6). P. 747 – 764.
- Lozinsky V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems. 33. Effect of rate of chilling aqueous poly(vinyl alcohol) solutions during their freezing on physicochemical properties and porous structure of resulting cryogels. Colloid Journal. 2012. 74 (3). P. 319 – 327.
- Trieu H.H., Qutubuddin S. Poly(vinyl alcohol) hydrogels. 1 .Microscopic structure by freeze-etching and critical point drying techniques. Colloid and Polymer Science. 1994. 272. P. 301 – 309.
- Willcox P.J., Howie D.W., Schmidt-Rohr K., Hoagland D.A., Gido S.P., Pudjijanto S., Kleiner L.W., Venkatraman S. Microstructure of Poly(Vinyl Alcohol) Hydrogels Produced by Freeze/Thaw Cycling. Journal of Polymer Science. Part B: Polymer Physics. 1999. 37. P. 3438 ל 3454.
- Hassan, C.M., Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science. 2000. 153. P. 37 – 65.
- Podorozhko E.A., Buzin M.I., Golubev E.K., Shcherbina M.A., Lozinsky V.I. A study of cryostructuring of polymer systems. 59. Effect of cryogenic treatment of preliminarily deformed poly(vinyl alcohol) cryogels on their physicochemical properties. Colloid Journal. 2021. 83 (5). P. 634 – 641. doi: 10.1134/S1061933X21050112.
- Lozinsky V.I., Podorozhko E.A., Nikitina Y.B., Klabukova L.F., Vasil’ev V.G., Burmistrov A.A., Kondrashov Y.G., Vasiliev N.K. A study of cryostructuring of polymer systems. 45. Effect of porosity of dispersed filler on physicochemical characteristics of composite poly(vinyl alcohol) cryogels. Colloid Journal. 2017. 79 (4). P. 497 – 507. doi: 10.1134/S1061933X17040081.
- Lozinsky V.I., Savina I.N. A study of cryostructuring of polymer systems: 22. Composite poly(vinyl alcohol) cryogels filled with dispersed particles of various degrees of hydrophilicity/hydrophobicity. Colloid Journal. 2002. 64 (3). P. 336 – 343.
- Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). P. 64.
- Savina I.N., Lozinsky V.I. A study of cryostructuring of polymer systems: 23. Composite poly(vinyl alcohol) cryogels filled with dispersed particles containing ionogenic groups. Colloid Journal. 2004. 66 (3). P. 343 – 349.
- Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
- Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. 15 (14). P. 5058.
Supplementary files
