Heat dissipation of cement and design the composition of concrete for massive structures
- Authors: Nesvetaev G.V1, Koryanova Y.I1, Khezhev T.A2
-
Affiliations:
- Don State Technical University
- Kabardino-Balkarian State University
- Issue: Vol 8, No 1 (2025)
- Pages: 40-51
- Section: Articles
- URL: https://journals.rcsi.science/2618-7183/article/view/379622
- DOI: https://doi.org/10.58224/2618-7183-2025-8-1-3
- ID: 379622
Cite item
Full Text
Abstract
About the authors
G. V Nesvetaev
Don State Technical University
ORCID iD: 0000-0003-4153-1046
Yu. I Koryanova
Don State Technical University
ORCID iD: 0000-0002-2341-9811
T. A Khezhev
Kabardino-Balkarian State University
ORCID iD: 0000-0001-8424-7737
References
- Brusser M.I., Podmazova S.A. Design of heavy and fine-grained concrete compositions. Development paths. Concrete and reinforced concrete. 2021. 2 (604). P. 3 – 7.
- Brusser M.I., Podmazova S.A. Design of heavy and fine-grained concrete compositions. Development paths. Concrete technologies. 2017. 9-10 (134-135). P. 24 – 28.
- Taranukha N.A., Vasiliev A.S. Algorithms and models in numerical design of composite media for specified characteristics for offshore structures. Scientific notes of Komsomolsk-on-Amur State Technical University. 2015. 1 (21). P. 81 – 86.
- Vasiliev A.S., Gulimova E.V. The need to automate the design of heavy concrete composition using antifreeze admixtures. Potential of modern science. 2014. 1. P. 20 – 24.
- Dvorkin L.I., Dvorkin O.L. Development of the theory of designing cement concrete compositions. Part 1. Concrete technologies. 2011. 11-12 (64-65). P. 64 – 67.
- Dvorkin L.I., Dvorkin O.L. Development of the theory of designing cement concrete compositions. Part 2. Concrete technologies. 2012. 1-2 (66-67). P. 59 – 63.
- Dobshits L.M. Ways to improve the durability of concrete. Construction materials. 2017. 10. P. 4 – 9.
- Dvorkin L.I., Dvorkin O.L. Evaluation of the efficiency of admixtures in the design of concrete compositions. Part 3. Concrete technologies. 2011. 9-10 (62-63). P. 36 – 37.
- Kovshar S.N., Babitsky V.V. Design of concrete composition taking into account its frost resistance. Bulletin of the Belarusian National Technical University. 2010. 3. P. 15 – 20.
- Erofeev V.T., Elchishcheva T.F., Vatin N.I. et al. Design of external wall structures of buildings under adverse environmental influences. Industrial and civil engineering. 2020. 8. P. 4-15. doi: 10.33622/0869-7019.2020.08.04-15
- Kovshar S.N., Ryabchikov P.V., Gushchin S.V. Assessment of the thermal stress state of a concrete massif. Science and Technology. 2021. 20. 3. P. 207-215. doi: 10.21122/2227-1031-2021-20-3-207-215
- Zaychenko N.M., Serdyuk A.I. Concretes with high ash content for massive reinforced concrete structures. Bulletin of the Donbass National Academy of Civil Engineering and Architecture. 2013. 1 (99). P. 137 – 144.
- Rahimi A., Noorzaei J. Thermal and structural analysis of roller compacted concrete (R.C.C) dams by finite element code. Australian Journal of Basic and Applied Sciences. 2011. 5. P. 2761 – 2767.
- Sheng X. et al. Experimental and finite element investigations on hydration heat and early cracks in massive concrete piers. Case Studies in Construction Materials. 2023. 18. P. e01926
- Koryanova Yu.I., Nesvetaev G.V., Chepurnenko A.S., Sukhin D.P. On the issue of modeling temperature stresses during concreting of massive reinforced concrete slabs. Engineering Journal of Don. 2022. 6. P. 1 – 20. URL: ivdon.ru/ru/magazine/archive/n6y2022/7691
- Koryanova Yu.I., Nesvetaev G.V., Chepurnenko A.S., Sukhin D.P. Evaluation of some methods for calculating thermal stresses during concreting of massive reinforced concrete foundation slabs. Engineering Journal of Don. 2022. 7. P. 1 – 17. URL: ivdon.ru/ru/magazine/archive/n7y2022/7817
- Smolana A. et al. Early age cracking risk in a massive concrete foundation slab: Comparison of analytical and numerical prediction models with on-site measurements. Construction and Building Materials. 2021. 301. P. 124135.
- Semenov K. et al. Unsteady Temperature Fields in the Calculation of Crack Resistance of Massive Foundation Slab During the Building Period. Proceedings of EECE 2019. ed. Anatolijs B., Nikolai V., Vitalii S. Cham: Springer International Publishing, 2020. P. 455 – 467.
- Kumar M.P., Monteiro P.J.M. Concrete, microstructure, properties and materials. Mc Graw Hill. USA, 2001. 239 p.
- Wade S.A. et al. Evaluation of the maturity method to estimate concrete strength. ALDOT Research Project 930-590. 2008. 1. P. 307.
- Zeng Y. et al. Curing parameters’ influences of early-age temperature field in concrete continuous rigid frame bridge. Journal of Cleaner Production. Elsevier Ltd, 2021. 313. P. 127571.
- Solov'yanchik A.R., Pulyaev S.M., Pulyaev I.S. Study of heat dissipation of cements used in the construction of a bridge across the Kerch Strait. Bulletin of the Siberian State Automobile and Highway University. 2018. 15. 2 (60). P. 283 – 293.
- Bogdanov R.R., Ibragimov R.A. Process of hydration and structure formation of the modified self-compacting concrete. Magazine of Civil Engineering. 2017. 5 (73). P. 14 – 24. doi: 10.18720/MCE.73.2
- Starodubtsev A.A. Analysis of heat dissipation of concrete structures at the strength gain stage. Trends in the development of science and education. 2022. 84-2. P. 164 – 167. doi: 10.18411/trnio-04-2022-91
- Nesvetaev G.V., Koryanova Yu.I., Shut V.V. Specific heat dissipation of concrete and the risk of early cracking of massive reinforced concrete foundation slabs. Construction materials and products. 2024. 7 (4). 3. doi: 10.58224/2618-7183-2024-7-4-3
- Xingwang Sheng, Shimiao Xiao, Weiqi Zheng, Ying Yang, Kunlin Ma, Hydration kinetics analysis of cementitious paste composites produced by binary and ternary binder materials for potential use in massive concrete structures. Case Studies in Construction Materials. 2023. 18. e02209. DOI: doi.org/10.1016/j.cscm.2023.e02209
- Riding K.A., Poole J.L., Juenger M.C.G., Schindler A. Modeling hydration of cementitious systems. ACI Materials Journal. 2012. 109 (2). P. 225 – 234.
- Schackow A., Effting C., Gomes I.R., Patruni I.Z., Vicenzi F., Kramel C. Temperature variation in concrete samples due to cement hydration. Applied Thermal Engineering. 2016. 103. P. 1362 – 1369. URL: https://api.semanticscholar.org/CorpusID:112940995
- Aniskin N.A., Nguyen T.-C. Influence factors on the temperature field in a mass concrete. E3S Web of Conferences. 2019. 97. P. 05021.
- Sheng X. et al. Hydration kinetics analysis of cementitious paste composites produced by binary and ternary binder materials for potential use in massive concrete structures. Case Studies in Construction Materials. 2023. 18. P. e02209.
- Struchkova A.Y. et al. Heat dissipation of cement and calculation of crack resistance of concrete massifs. Magazine of Civil Engineering. 2018. 78. 2. P. 128 – 135.
- Tazawa E., Miyazawa. S. Influence of autogenous shrinkage on cracking in high strength concrete. 4 International Conference on High strength/High performance concrete. Paris, 1996. P. 321 – 329.
Supplementary files
