Methodology of designing a small spacecraft for technological purposes
- Authors: Sedelnikov A.V.1, Taneeva A.S.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 8, No 4 (2024)
- Pages: 73-79
- Section: Articles
- URL: https://journals.rcsi.science/2588-0373/article/view/279358
- DOI: https://doi.org/10.25206/2588-0373-2024-8-4-73-79
- EDN: https://elibrary.ru/TTAAOV
- ID: 279358
Cite item
Full Text
Abstract
The paper presents a methodology for designing a small spacecraft to perform the tasks of technological processes in near-Earth space. When designing such a small spacecraft, it is assumed that it will be equipped with a microgravity platform to meet the requirements for micro-accelerations. The methodology is based on the principles of individuality, attainability and controllability. They guarantee the maximum possible consideration of the features of the gravity-sensitive process being implemented, including compliance with the requirements for limiting the micro-acceleration module in the working area of technological equipment and effective control of this implementation. The developed technique can be used in the design of a small spacecraft for technological purposes.
About the authors
Andrey V. Sedelnikov
Samara National Research University
Author for correspondence.
Email: onv@omgtu.ru
ORCID iD: 0000-0003-2698-1348
SPIN-code: 3987-6997
Doctor of Technical Sciences, Professor, Professor of Space Engineering Department
Russian Federation, Samara, Moskovskoye sh., 34, 443086Anastasiya S. Taneeva
Samara National Research University
Email: onv@omgtu.ru
ORCID iD: 0000-0002-8531-760X
SPIN-code: 8816-1930
Graduate Student of Space Engineering Department, Engineer of NII-219 (Research Institute of Space Engineering), Engineer and Assistant of Space Engineering Department
Russian Federation, Samara, Moskovskoye sh., 34, 443086References
- Raykunov G. G., Ezhov S. A., Gusev L. I. Sovremennyye tendentsii v razvitii kosmicheskogo priborostroyeniya i kosmicheskikh informatsionnykh sistem [Current trends in growth of space device engineering and space information systems] // Raketno-kosmicheskoye priborostroyeniye i informatsionnyye sistemy. Rocket-Space Device Engineering and Information Systems. 2014. Vol. 1, no. 1. P. 3–12. EDN: THSWPD. (In Russ.).
- Sedelnikov A. V., Eskina E. V., Taneyeva A. S., Khnyreva E. S., Matveyeva E. S. Problema obespecheniya i kontrolya trebovaniy po mikrouskoreniyam na bortu malogo kosmicheskogo apparata tekhnologicheskogo naznacheniya [The problem of ensuring requirements for microaccelerations on board of small spacecraft] // Omskiy nauchnyy vestnik. Seriya aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2022. Vol. 6, no. 2. P. 90–98. doi: 10.25206/2588-0373-2022-6-2-90-98. EDN: YNTNVQ. (In Russ.).
- Klimenko N. N. Smena paradigmy: sozdaniye i primeneniye psevdokosmicheskikh apparatov kak sostavnaya chast’ «novoy kosmicheskoy revolyutsii» i «novoy bespilotnoy revolyutsii» [Paradigm shift: development and deployment of high altitude pseudosatellites as a complementary part of «new space revolution» and «new drone revolution»] // Vestnik NPO im. S. A. Lavochkina. Vestnik NPO IM. S. A. Lavochkina. 2023. No. 3 (61). P. 3–18. doi: 10.26162/LS.2023.61.3.001. (In Russ.).
- Aslanov V. S., Yudintsev V. V. Vybor parametrov sistemy uvoda kosmicheskogo musora s uprugimi elementami posredstvom trosovoy buksirovki [Parameters selection of space debris removal system with elastic elements by cable towing] // Vestnik Moskovskogo aviacionnogo instituta. Aerospace MAI Journal. 2018. Vol. 25, no. 1. P. 7–17. EDN: YSPCOF. (In Russ.).
- Sedel’nikov A. V., Taneyeva A. S. Modelirovaniye polya mikrouskoreniy v zashchishchennoy zone vibrozashchitnykh ustroystv dlya realizatsii gravitatsionno-chuvstvitel’nykh protsessov na bortu malogo kosmicheskogo apparata tekhnologicheskogo naznacheniya [Modeling the micro-acceleration field in the protected zone of vibration-proof devices for implementation of gravity-sensitive processes on board a small technological spacecraft] // Omskiy nauchnyy vestnik. Seriya aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2023. Vol. 7, no. 2. P. 65–72. doi: 10.25206/2588-0373-2023-7-2-65-72. EDN: AJCGPU. (In Russ.).
- Sedelnikov A. V., Molyavko D. P., Khnyreva E. S. O snizhenii upravlyayemosti kosmicheskogo apparata pri provedenii aktivnogo kontrolya mikrouskoreniy na stadii ekspluatatsii [About decrease in controllability of spacecraft when carrying out active control microaccelerations at the operation stage] // Aviakosmicheskoye priborostroyeniye. Aerospace Instrument-Making. 2017. No. 4. P. 25–34. EDN: YUONUD. (In Russ.).
- Lobykin A. A. Metody uluchsheniya mikrogravitatsionnoy obstanovki na bortu avtomaticheskogo kosmicheskogo apparata, prednaznachennogo dlya mikrogravitatsionnykh issledovaniy [Enhancement of Microgravity Environment on a Board of Automatic Spacecraft for Microgravity Investigations] // Poverkhnost’. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2009. No. 2. P. 84–91. EDN: JVSLCD. (In Russ.).
- Sedelnikov A. V. Kontrol’ mikrouskoreniy kak vazhneyshey kharakteristiki kosmicheskoy laboratorii spetsializirovannogo tekhnologicheskogo naznacheniya konstruktivnymi metodami [Control of microaccelerations as the major characteristics of space laboratory of specialized technological appointment as constructive methods] // Kontrol’. Diagnostika. Testing. Diagnostics. 2014. No. 7. P. 57–63. doi: 10.14489/td.2014.07.pp.057-063. EDN: SGPIKR. (In Russ.).
- Elkin K. S., Ivanov A. I., Neznamova L. O., Prudkoglyad V. O. Perspektivy sozdaniya vakuumnykh i gravitatsionno-chuvstvitel’nykh tekhnologiy, ispol’zuyushchikh usloviya kosmicheskogo poleta na okolozemnykh orbitakh. Issledovaniye gravitatsionno-chuvstvitel’nykh yavleniy na bortu otechestvennykh kosmicheskikh apparatov [Prospects for creation of vacuum and gravity-sensitive technologies using space flight conditions in near-Earth orbits. Investigation of gravity-sensitive phenomena on board domestic spacecrafts] / By ed. K. S. Elkina. Moscow, 2013. 306 p. (In Russ.).
- Wu Q., Liu B., Cui N. [et al.] Tracking Control of a Maglev Vibration Isolation System Based on a High-Precision Relative Position and Attitude Model // Sensors. 2019. Vol. 19. 3375. doi: 10.3390/s19153375. (In Engl.).
- Liu J., Li Y., Zhang Y. [et al.] Dynamics and control of a parallel mechanism for active vibration isolation in space station // Nonlinear Dynamics. 2014. Vol. 76, no. 3. P. 1737–1751. doi: 10.1007/s11071-014-1242-3. (In Engl.).
- Borisov A. E., Emel’yanov G. A., Nikitin S. A. Parametricheskaya optimizatsiya sistemy upravleniya avtomaticheskoy povorotnoy vibrozashchitnoy platformy dlya mikrogravitatsionnykh issledovaniy [Parametric system optimization of the management of an automatic rotary vibration-proof platform for the microgravity research] // Kosmonavtika i raketostroyeniye. Cosmonautics and Rocket Engineering. 2013. No. 3 (72). P. 147–155. EDN: RECYIT. (In Russ.).
- Zhu T., Cazzolato B., Robertson W. S. P. [et al.] Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation // Journal of Sound and Vibration. 2015. Vol. 358. P. 48–73. doi: 10.1016/j.jsv.2015.07.013. (In Engl.).
- Grodsinsky C. M., Whorton M. S. A Survey of Active Vibration Isolation Systems for Microgravity Applications // Journal of Spacecraft and Rockets. 2000. Vol. 37, no. 5. P. 586–596. doi: 10.2514/2.3631. (In Engl.).
- Liu C., Jing X., Daley S. Recent advances in micro-vibration isolation // Mechanical Systems and Signal Processing. 2015. Vol. 56–57. P. 55–80. doi: 10.1016/j.ymssp.2014.10.007. (In Engl.).
- Wang S., Hou L., Meng Q. [et al.] Three-magnet-ring quasi-zero stiffness isolator for low-frequency vibration isolation // International Journal of Mechanical System Dynamics. 2024. Vol. 4, no. 2. P. 153–170. doi: 10.1002/msd2.12107. (In Engl.).
- Xie D., Zheng Z., Zhu Y. Design of a two-degree-of-freedom magnetic levitation vibration energy harvester for bridge vibration response analysis // Heliyon. 2024. Vol. 10, no. 4. e26000. doi: 10.1016/j.heliyon.2024.e26000. (In Engl.).
- Ming C., Xing J., Chen Z. [et al.] Design, analysis and experimental investigation on the whole-spacecraft vibration isolation platform with magnetorheological dampers // Smart Materials and Structures. 2019. Vol. 28, no. 7. 075016. doi: 10.1088/1361-665X/ab0ebe. (In Engl.).
- Wang A., Wang S., Xia H. [et al.]. Dynamic Modeling and Control for a Double-State Microgravity Vibration Isolation System // Microgravity Science and Technology. 2023. Vol. 35, no. 1. 9. doi: 10.1007/s12217-022-10027-8. (In Engl.).
- Edberg D., Boucher R., Nurre G. S. [et al.] Performance assessment of the STABLE Microgravity Vibration Isolation Flight Demonstration // 38th Conference Structures, Structural Dynamics, and Materials. 1997. doi: 10.2514/6.1997-1202. (In Engl.).
- Jones D. I., Owens R. G., Owen A. R. A microgravity isolation mount // Acta Astronautica. 1987. Vol. 15, no. 6–7. P. 441–448. (In Engl.).
- Whorton M. S. g-LIMIT — A microgravity vibration isolation system for the International Space Station // Conference and Exhibit on International Space Station Utilization. 2001. doi: 10.2514/6.2001-5090. (In Engl.).
- Dong W., Duan W., Liu W. [et al.] Microgravity disturbance analysis on Chinese space laboratory // npj Microgravity. 2019. Vol. 5, no. 1. doi: 10.1038/s41526-019-0078-z. (In Engl.).
- Qian Y., Xie Y., Jia J. [et al.] Development of Active Microvibration Isolation System for Precision Space Payload // Applied Science. 2022. Vol. 12. 4548. doi: 10.3390/app12094548. (In Engl.).
- Kim Y., Kim S., Park K. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor // Review of Scientific Instruments. 2009. Vol. 80. 045108. doi: 10.1063/1.3117462. (In Engl.).
- Zhongxiang Y., Zhengguang Zh., Lizhan Z. [et al.]. Microvibration isolation in sensitive payloads: methodology and design // Nonlinear Dynamics. 2023. Vol. 111, no. 21. P. 1–49. doi: 10.1007/s11071-023-08943-4. (In Engl.).
- Sedelnikov A. V., Taneyeva A. S. Kontseptual’naya model’ malogo kosmicheskogo apparata tekhnologicheskogo naznacheniya [Conceptual model of a technological purpose small spacecraft] // Vestnik Moskovskogo aviatsionnogo instituta. Aerospace MAI Journal. 2024. Vol. 31, no. 2. P. 44–55. EDN: WVCFSZ. (In Russ.).
- Sazonov V. V., Chebukov S. Yu., Abrashkin V. I. [et al.] Analiz nizkochastotnykh mikrouskoreniy na bortu ISZ FOTON-11 [Low-frequency microaccelerations onboard the foton-11 satellite] // Kosmicheskiye issledovaniya. Cosmic Research. 2001. Vol. 39, no. 4. P. 419–435. EDN: OUWKOJ. (In Russ.).
- Abrashkin V. I., Bogoyavlenskiy N. L., Voronov K. E. [et al.] Neupravlyayemoye dvizheniye sputnika Foton M-2 i kvazistaticheskiye mikrouskoreniya na ego bortu [Uncontrolled motion of the Foton M-2 satellite and quasistatic microaccelerations on its board] // Kosmicheskiye issledovaniya. Cosmic Research. 2007. Vol. 45, no. 5. P. 450–471. EDN: IAQPJV. (In Russ.).
- Abrashkin V. I., Voronov K. E., Piyakov I. V. [et al.] Vrashchatel’noye dvizheniye sputnika FOTON M-4 [Rotational motion of Foton M-4] // Kosmicheskiye issledovaniya. Cosmic Research. 2016. Vol. 54, no. 4. P. 315–322. doi: 10.7868/s0023420616040014. EDN: WDORML. (In Russ.).
Supplementary files
