Improving inertial separating penetrators considering the features of their impact penetration into the studied celestial bodies

Abstract

The article considers factors that can negatively affect the creation of reliable radio communication between an inertial separating penetrator after its impact penetration into the soil of the studied celestial body and an orbital vehicle. The authors conduct the calculation and analysis of overloads acting to the forward head and antenna parts. Moreover, the research demonstrates that the overload on the antenna part can be dozens of times greater than on the forward head. The authors also present the calculation and analysis of the input diameters of the funnels formed from the impact penetration of the penetrator into different soils of the studied celestial body. The research considers possibilities of improving penetrators by using segmented, telescopic and hybrid tips, as well as reverse shooting of the antenna, which allow reducing the impact speed and overloads during impact penetration of the penetrator into the soil of the studied celestial body.

About the authors

Leun V. Leun

Lavochkin Association

Author for correspondence.
Email: stankin1999@mail.ru
SPIN-code: 6060-8056
Scopus Author ID: 57200722184

Candidate of Technical Sciences, Lead Engineer

Russian Federation, Moscow region, Khimki

Sergey A. Chalov

Lavochkin Association

Email: chalovs@mail.ru

Lead Engineer

Russian Federation, Moscow region, Khimki

References

  1. Leun E. V., Nesterin I. M., Pichkhadze K. M., Polyakov A. A. [et al.]. Obzor skhem penetratorov dlya kontaktnykh issledovaniy kosmicheskikh ob′′yektov [Review of penetrator designs for contact studies of space objects]. Kosmicheskaya tekhnika i tekhnologii. Space Technique and Technologies. 2022. No. 2. P. 103–117. EDN: AMJBCU. (In Russ.).
  2. Leun E. V., Dobritsa D. B., Polyakov A. A. [et al.]. K voprosu vybora konstruktsionnykh materialov dlya sozdaniya mnogofunktsional’nykh inertsionnykh penetratorov [On the question of the choice of structural materials for the creation of multifunctional inertial penetrators]. Vestnik NPO im. S. A. Lavochkina. 2023. Vol. 4 (62). P. 80–86. doi: 10.26162/LS.2023.62.4.011. EDN: WGHDNK. (In Russ.).
  3. Pisetsky V. V. Vysokoskorostnoye proniknoveniye penetratora v razlichnykh rezhimakh yego deformatsii v peschanyy grunt [High-speed penetration in various modes of its deformation into sandy soil]. Sarov, 2021. 132 p. (In Russ.).
  4. Gerasimov S. I., Zubankov A. V., Kalmykov A. P. [et al.]. Eksperimental′noye issledovaniye dvizheniya udarnika v solenom l′du [Experimental and theoretical study of high-velocity penetration of long rod projectiles into sand]. Zhurnal tekhnicheskoy fiziki. Technical Physics. 2022. Vol. 92, no. 3. P. 392–404. doi: 10.21883/JTF.2022.03.52134.275-21. EDN: CBCTJR. (In Russ.).
  5. Gerasimov S. I., Zubankov A. V., Kalmykov A. P. [et al.]. Eksperimental′noye issledovaniye dvizheniya udarnika v solenom l′du [Experimental study of impactor motion in salt ice]. Prikladnaya mekhanika i tekhnicheskaya fizika. Journal of Applied Mechanics and Technical Physics. 2020. Vol. 61, no. 4 (362). P. 54–58. (In Russ.).
  6. Petorvic J. J. Review Mechanical properties of ice and snow. January Journal of Materials Science. 2003. Vol. 38. P. 1–6. doi: 10.1023/A:1021134128038. (In Engl.).
  7. Slyuta E. N. Physical and mechanical properties of the lunar soil (a review). Solar System Research. 2014. Vol. 48, no. 5. P. 330–353. doi: 10.1134/S0038094614050050. EDN: SENWRV. (In Engl.).
  8. SU 1649218 SSSR, IPN F 25 C 1/00, S 09 K 3/24. Sposob polucheniya iskusstvennogo l’da [Method of producing artificial ice] / Rogozhin S. V., Cheverev V. G., Vaynerman E. S. [et al.]. No. 4694538/13. (In Russ.).
  9. Kerckhoff F., Gohlke W., Goldsmith W. [et al.]. Fizika bystroprotekayushchikh protsessov [Physics of Fast Processes] / Ed. by N. A. Zlatin. Moscow, 1971. 352 p. (In Russ.).
  10. Marakhtanov M. K., Veldanov V. A., Dukhopel’nikov D. V. [et al.]. Modelirovaniye mekhanizma razrusheniya kosmicheskikh apparatov v rezul’tate inertsial’nogo vzryva ik hmetallicheskikh uzlov pri stolknovenii [Modeling a spacecraft fracture mechanism occurring as a result of its metal components inertial explosion at collision] // Vestnik Moskovskogo aviatsionnogo institute. Aerospace MAI Journal. 2017. Vol. 24, no. 1. P. 17–25. EDN: YGSBOV. (In Russ.).
  11. Leun E. V., Dobriza D. B., Polyakov A. A., Sysoev V. K. Analiz osobennostey vozniknoveniya inertsial′nogo vzryva v zadachakh vysokoskorostnykh udarov metallicheskikh penetratorov v issleduyemoye nebesnoye telo i meteorno-tekhnogennykh chastits v elementy kosmicheskikh apparatov [The analysis of features of occurrence of inertial explosion in problems of high-speed impact of metal penetrators into the studied celestial body and meteor-technogenic particles into elements of spacecraft]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2022. Vol. 6, no. 2. P. 99–110. doi: 10.25206/2588-0373-2022-6-2-99-110. EDN: GOWALR. (In Russ.).
  12. Veldanov V. A., Smirnov V. E., Khavroshkin O. B. Lunnyy penetrator: snizheniye peregruzok, upravleniye pronikaniyem [Lunar penetrator: reducing overload, controlling penetration]. Astronomicheskiy Vestnik. Issledovaniye Solnechnoy Sistemy. 1999. Vol. 33, no. 5. P. 490. (In Russ.).
  13. Approksimatsiya funktsii odnoy peremennoy [Approximation of one variable function]. URL: https://planetcalc.ru/5992/ (accessed: 10.02.2025). (In Russ.).
  14. Glazyrin V. P. Deformatsiya i razrusheniye neodnorodnykh materialov i konstruktsiy pri udare i vzryve [Deformation and destruction of heterogeneous materials and structures under impact and explosion]. Tomsk, 2008. 249 р. (In Russ.).
  15. Fedorov S. V., Veldanov V. A., Gladkov N. A., Smirnov V. E. Chislennyy analiz proniknoveniya v stal'nuyu pregradu segmentirovannykh i teleskopicheskikh udarnikov iz vysokoplotnogo splava [Numerical analysis of penetration of segmented and telescoic projectiles of high density alloy into the steel target]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya Mashinostroyeniye. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2016. No. 3 (108). P. 100–117. EDN: WBKDOT. (In Russ.).
  16. Fedorov S. V. Vysokoskorostnoye proniknoveniye v gruntovo-skal'nyye pregrady protyazhennykh i segmentirovannykh udarnikov [High-velocity penetration of elongated and segmented projectiles into soil-rock targets]. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Vestnik of Lobachevsky University of Nizhni Novgorod. 2011. No. 4-4. P. 1819–1821. EDN: TBGQHP. (In Russ.).
  17. Orlova Yu. N. Kompleksnoye teoretiko-eksperimental′noye issledovaniye povedeniya l′da pri udarnykh i vzryvnykh nagruzkakh [Complex theoretical and experimental study of ice under impact and explosive loads]. Tomsk, 2014. 189 p. (In Russ.).
  18. Papchenko B. P., Khegay D. K., Sysoev V. K., Yudin A. D. [et al.]. Transformiruyemaya machta ul'trafioletovogo parusa na osnove privodov iz materialov s effektom pamyati formy [Transformable solar sail mast based on drives made of shape memory materials]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyeniye. Journal of Instrument Engineering. 2021. Vol. 64, no. 1. P. 71–76. doi: 10.17586/0021-3454-2021-64-1-71-76. EDN: PCSIRH. (In Russ.).
  19. Finchenko V. S., Pichkhadze K. M., Efanov V. V. Naduvnyye elementy v konstruktsiyakh oblachnykh apparatov — proryvnaya tekhnologiya v raketno-kosmicheskoy tekhnike [Inflatable elements in spacecraft structures — breakthrough technology in rocket and space sphere]. Khimki, 2019. 488 p. EDN: KKDBIZ. (In Russ.).
  20. Lyashuk A. N., Zavyalov S. A., Lepetaev A. N. Proyektirovaniye vysokochastotnogo avtogeneratora dlya udarostoykikh primeneniy [Design of high frequency oscillator for high shock applications]. Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2014. No. 4. P. 43–46. EDN: SYOTQN. (In Russ.).
  21. Bragin I. V., Moiseev M. V., Istyakov I. V. [et al.]. Sistema global'nogo telemetricheskogo kontrolya izdeliy raketno-kosmicheskoy tekhniki na osnove bortovykh fazirovannykh antennykh reshetok ili mnogoluchevykh kommutiruyemykh antennykh system [Global system of telemetric control products rocket and space technology on the basis of airborne phased antenna arrays or multibeam switched antenna systems]. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika. Journal of the Russian Universities. Radioelectronics. 2013. No. 1. Р. 60–69. EDN: QCICJH. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».