Peculiarities of operating modes of booster piston compressors based on a low-speed long-stroke compressor stage in mobile compressor stations

Cover Page

Cite item

Full Text

Abstract

The article considers the relationship between the increase in temperature at the standard suction point of a booster long-stroke low-speed piston compressor stage and the change in the state parameters in the working cavity of the cylinder and its integral characteristics. The parametric analysis is performed using a proven and verified mathematical model of the actual working processes of the stage in question. Based on the results of the conducted calculation and theoretical analysis, the fundamental possibility of implementing operating modes in which the average discharge temperature of a given stage is lower than the temperature at its standard suction point is proven. At the same time, with regard to the suction conditions in a given stage, there is an increase in the delivery coefficient. The presented results reflect the features of the operating processes of the piston compressor stage under consideration and allow predicting the possibility of its effective use as a booster stage in mobile compressor stations.

About the authors

Vladimir L. Yusha

OJSC «Sibneftetransproekt»

Author for correspondence.
Email: 1978yusha@mail.ru
ORCID iD: 0000-0001-9858-7687
SPIN-code: 1503-9666
Scopus Author ID: 6505861937
ResearcherId: J-8079-2013

Doctor of Technical Sciences, Professor, Chief Specialist of the Technical Department

Russian Federation, Omsk

Sergey S. Busarov

Omsk State Technical University

Email: bssi1980@mail.ru
Scopus Author ID: 51560987400

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Refrigeration and Compressor Equipment and Technology Department

Russian Federation, Omsk

References

  1. Katalog produktsii Nev′yanskogo mashinostroitel′nogo zavoda [Product catalogue of Nevyansk Machine Building Plant]. URL: https://nmz-group.ru/catalog/kompressornye-stantsii/ (accessed: 20.10.2024). (In Russ.).
  2. Katalog produktsii Chelyabinskogo kompressornogo zavoda [Product catalogue of Chelyabinsk Compressor Plant]. URL: https://www.chkz.ru/catalog/Diesel-generator-installations/ (accessed: 20.10.2024). (In Russ.).
  3. Katalog produktsii Ural′skogo kompressornogo zavoda [Product catalogue of Ural Compressor Plant]. URL: https://www.ukz.ru/ (accessed: 20.10.2024). (In Russ.).
  4. Katalog produktsii Krasnodarskogo kompressornogo zavoda [Product catalogue of Krasnodar Compressor Plant]. URL: https://kkzav.ru/ (accessed: 20.10.2024). (In Russ.).
  5. Prilutskiy I. K., Kazimirov A. V., Molodova Yu. I., Galyayev P. O. Peredvizhnyye kompressornyye stantsii. Perspektivy razvitiya [Mobile compressor stations. prospect development]. Kompressornaya tekhnika i pnevmatika. Compressors & Pneumatics. 2019. No. 1. P. 24–30. EDN: UCTWPV. (In Russ.).
  6. Obshchiye pravila vzryvobezopasnosti dlya vzryvo-pozharoopasnykh khimicheskikh, neftekhimicheskikh i neftepererabatyvayushchikh proizvodstv: prikaz ot 15 dekabrya 2020 goda № 553 ob utverzhdenii Federal′nykh norm i pravil v oblasti promyshlennoy bezopasnosti [General safety rules for explosion and fire hazardous chemical, petrochemical and oil refining production facilities: Order No. 553 of December 15, 2020 on approval of Federal norms and rules in the industrial safety sphere]. URL: https://normativ.kontur.ru/document?moduleId=1&documentId=390702 (accessed: 20.10.2024). (In Russ.).
  7. GOST R 54802-2011 (ISO 13631:2002). Neftyanaya i gazovaya promyshlennost′. Kompressory porshnevyye gazovyye agregatirovannyye. Tekhnicheskiye trebovaniya [Petroleum and natural gas industries. Packaged reciprocating gas compressors. Technical requirements]. Moscow, 2014. 92 p. (In Russ.).
  8. Vasil′yev Yu. S., Petrenya Yu. K., Soldatova K. V. [et al.]. Trudy politekhnicheskoy nauchnoy shkoly turbokompressorostroyeniya 21 veka [Proceedings of the Polytechnic Scientific School of Turbocompressor Engineering of the 21st Century.]. Saint Petersburg, 2023. 384 p. (In Russ.).
  9. Khisameyev I. G., Maksimov V. A. Dvukhrotornyye vintovyye i pryamozubyye kompressory: teoriya, raschet i proyektirovaniye [Dual rotor screw and spur screw compressors: theory, calculation and design]. Kazan, 2000. 638 p. (In Russ.).
  10. Prilutskiy I. K., Naumchik I. V., Kazimirov A. V. [et al.]. Vliyaniye velichiny vnutrenney poverkhnosti teploobmennoy poverkhnosti tsilindrov porshnevykh kompressorov s krivoshipno-shatunnym i lineynym privodom na intensivnost′ teploobmennykh protsessov v stupenyakh s povyshennym otnosheniyem davleniy [The effect of the internal heat-exchange surface of the cylinders in the reciprocating compressors with crank-and-rod and linear drive]. Vestnik Mezhdunarodnoy akademii kholoda. Journal of International Academy of Refrigeration. 2022. No. 1. P. 11–25. doi: 10.17586/1606-4313-2022-21-1-11-25. EDN: BGFIEV. (In Russ.).
  11. Plastinin P. I. Porshnevyye kompressory. V 2 t. T. 1. Teoriya i raschet [Piston compressors. In 2 vols. Vol. 1. Theory and calculation]. 3rd ed., revision and supplement. Moscow, 2006. 456 p. (In Russ.).
  12. Yusha V. L., Den’gin V. G., Busarov S. S., Nedovenchanyi A. V., Gromov A. Yu. The estimation of thermal conditions of highly-cooled long-stroke stages in reciprocating compressors. Procedia Engineering. 2015. Vol. 113. P. 264–269. doi: 10.1016/j.proeng.2015.07.333. (In Engl.)
  13. Yusha V. L., Busarov S. S., Gromov A. Yu. Assessment of the Prospects of Development of Medium-Pressure Single-Stage Piston Compressor Units. Chemical and Petroleum Engineering. 2017. Vol. 53. P. 453–458. doi: 10.1007/s10556-017-0362-2. (In Engl.)
  14. Gromov A. Yu. Razrabotka porshnevykh stupeney s lineynym privodom dlya maloraskhodnykh kompressornykh agregatov i issledovaniye ikh rabochikh protsessov [Development of piston stages with linear drive for low-flow compressor sets and research of their working processes]. Omsk, 2017. 213 p. (In Russ.).
  15. Nedovenchanyy A. V. Povysheniye energeticheskoy i dinamicheskoy effektivnosti maloraskhodnogo odnostupenchatogo kompressornogo agregata s lineynym gidroprivodom [Increasing the Energy and Dynamic Efficiency of a Piston Low-Flow Single-Stage Compressor Unit with a Linear Hydraulic Drive]. Omsk, 2020. 232 p. (In Russ.).
  16. Prilutskiy I. K., Kazimirov A. V., Molodova Yu. I., Tatarenko Yu. V. Prognoz parametrov eksperimental′noy stupeni kompressora s lineynym privodom i peremennym diametrom tsilindra pri rabote v sostave sistem elektrokhimicheskoy regeneratsii vozdukha [Prediction of the parameters for the experimental stage of the compressor with a linear drive and a variable cylinder diameter when operating as a part of electrochemical air regeneration systems]. Vestnik Mezhdunarodnoy akademii kholoda. Journal of International Academy of Refrigeration. 2021. No. 4. P. 18–29. doi: 10.17586/1606-4313-2021-20-4-18-29. EDN: PGFAFQ. (In Russ.).
  17. Kavtaradze R. Z. Lokal′nyy teploobmen v porshnevykh dvigatelyakh [Local heat exchange in reciprocating engines]. Moscow, 2001. 592 p. (In Russ.).
  18. Plastinin P. I., Yusha V. L., Busarov S. S. Analiz nestatsionarnykh temperaturnykh poley v stenkakh tsilindra kompressornoy stupeni [Analysis of changing temperature fields in walls of compressor's stage cylinder]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2006. No. 5, Issue 39. P. 96–101. EDN: HVOVND. (In Russ.).
  19. Kalekin V. S., Kalekin D. V., Nefedchenko A. N. Matematicheskaya model′ porshnevogo pnevmodvigatelya s samodeystvuyushchimi klapanami [Mathematical model of piston pneumatic engine with self-acting valves]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2013. No. 3 (123). P. 72–76. EDN: RSSIZX. (In Russ.).
  20. Kobylskiy R. E. Primeneniye kombinirovannogo uplotneniya dlya snizheniya nagruzki, deystvuyushchey na tsilindroporshnevoye uplotneniye [The use of a combined seal to reduce the load acting on the cylinder piston seal]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shukhova. Bulletin of Belgorod State Technological University Named after. V. G. Shukhov. 2022. No. 7. P. 117–125. doi: 10.34031/2071-7318-2022-7-7-117-125. (In Russ.).
  21. Busarov I. S., Busarov S. S., Yusha V. L. Vliyaniye deformatsii protochnoy chasti elastomernykh elementov samodeystvuyushchikh klapanov na kharakteristiki tikhokhodnykh dlinnokhodovykh kompressornykh stupeney [The effect of deformation of flow part of elastomeric elements of self-acting valves on characteristics of low-speed long-stroke compressor stages]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2021. Vol. 5, no. 4. P. 33–38. doi: 10.25206/2588-0373-2021-5-4-33-38. EDN: ZZBIUU. (In Russ.).
  22. Busarov I., Yusha V., Busarov S., Kobilskiy R. Comparative evaluation of methods for calculating the dynamics of self-acting valves in reciprocating compressor units. Chemical and Petroleum Engineering. 2020. Vol. 56. P. 644–652. doi: 10.1007/s10556-020-00824-6. (In Engl.).
  23. Prilutskiy I. K., Molodova Yu. I., Galyayev P. O. [et al.]. Osobennosti protsessov teploobmena v stupenyakh maloraskhodnykh mashin ob′′yemnogo deystviya s razlichnymi mekhanizmami dvizheniya [Peculiarities of heat exchange processes in the stages of small-scale machines of volume action with different mechanisms of movement]. Vestnik Mezhdunarodnoy akademii kholoda. Journal of International Academy of Refrigeration. 2017. No. 4. P. 30–40. doi: 10.21047/1606-4313-2017-16-4-30-40. EDN: YOOIAP. (In Russ.).
  24. Busarov S. S. Povysheniye effektivnosti kompressornogo oborudovaniya dorozhno-stroitel′nykh mashin [Increase of compressor equipment efficiency of road-building machines]. Omsk, 2008. 123 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».