Influence of the extracorporeal membrane oxygenation system centrifugal pump operation mode on blood damage
- 作者: Isaeva M.S.1, Petrov A.I.1, Banin Y.P.2
-
隶属关系:
- Bauman Moscow State Technical University
- National Research Center «Kurchatov Institute»
- 期: 卷 8, 编号 4 (2024)
- 页面: 46-53
- 栏目: Статьи
- URL: https://journals.rcsi.science/2588-0373/article/view/279355
- DOI: https://doi.org/10.25206/2588-0373-2024-8-4-46-53
- EDN: https://elibrary.ru/OJRWPU
- ID: 279355
如何引用文章
全文:
详细
One of the key tasks in the development of mechanical circulatory support pump is to take into account its interaction with blood components and their corresponding damage. Within the framework of this study, numerical modeling of the pump operation in different modes is carried out and an assessment of the corresponding change in the values of hemolysis and thrombosis is made. It is found that the most dangerous operating modes also change depending on the parameter under consideration: hemolysis demonstrated the greatest dependence on rotation rate, thrombosis — on flow rate. It is also noted that regardless of the damage parameter taken into account, the greatest contribution to blood damage is made by volute, but the balance between the contribution of the pump elements vary depending on the damage parameter under consideration. The obtained results demonstrate that in order to create a safe mechanical circulatory support pump, during its design and optimization process it is necessary to take into account both hemolysis and thrombosis, as well as the dynamics of system operation.
作者简介
Mariya Isaeva
Bauman Moscow State Technical University
编辑信件的主要联系方式.
Email: mariya.kuleshova.92@gmail.com
ORCID iD: 0000-0001-5954-2320
SPIN 代码: 5727-7427
Research Fellow of Scientific Research Institute EM 3.4
俄罗斯联邦, Moscow, 2nd Baumanskaya St., 5, bld. 1, 105005Aleksey Petrov
Bauman Moscow State Technical University
Email: alexeypetrov@bmstu.ru
ORCID iD: 0000-0001-8048-8170
SPIN 代码: 7172-0320
Candidate of Technical Sciences, Associate Professor of E 10 Hydromechanics, Hydraulic Machines and Hydropneumatic Automation Department
俄罗斯联邦, Moscow, 2nd Baumanskaya St., 5, bld. 1, 105005Yevgeniy Banin
National Research Center «Kurchatov Institute»
Email: evgbanin@gmail.com
ORCID iD: 0000-0002-7006-2990
SPIN 代码: 4142-2918
Candidate of Technical Sciences, Researcher of Polymer Materials Laboratory of the Kurchatov complex of NBICS Technologies
俄罗斯联邦, Moscow, Akademika Kurchatova Squ., 1, 123182参考
- Nandakumar D., Bendavid A., Martin P. J. [et al.]. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications // ACS Applied Materials & Interfaces. 2016. Vol. 8 (11). P. 6802–6810. doi: 10.1021/acsami.5b11614. (In Engl.).
- Gorbet M. B., Sefton M. V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes // Biomaterials. 2004. Vol. 25 (26). P. 5681–5703. doi: 10.1016/j.biomaterials.2004.01.023. (In Engl.).
- Gorbet M., Sperling C., Maitz M. F. [et al.]. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells // Acta Biomater. 2019. Vol. 94 (1). P. 25–32. doi: 10.1016/j.actbio.2019.06.020. (In Engl.).
- Mei X., Lu B., Wu P., Zhang L. In vitro study of red blood cell and VWF damage in mechanical circulatory support devices based on blood-shearing platform // Proceedings of the Institution of Mechanical Engineers. Part H. Journal of Engineering in Medicine. 2022 Vol. 236 (6). P. 860–866. doi: 10.1177/09544119221088420. (In Engl.).
- Nakahara T., Yoshida F. Mechanical effects on rates of hemolysis // J Biomed Mater Res. 1986. Vol. 20 (3). P. 363–374. doi: 10.1002/jbm.820200308. (In Engl.).
- Yen J. H., Chen S. F., Chern M. K., Lu P. C. The effect of turbulent viscous shear stress on red blood cell hemolysis // International Journal of Artificial Organs. 2014. Vol. 17 (2). P. 178–185. doi: 10.1007/s10047-014-0755-3. (In Engl.).
- Chan C. H. H., Simmonds M. J., Fraser K. H. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear // Journal of Biomechanics. 2022. Vol. 130. 110898. doi: 10.1016/j.jbiomech.2021.110898. (In Engl.).
- Chen Z., Sun A., Wang H. Non-physiological shear stress-induced blood damage in ventricular assist device // Medicine in Novel Technology and Devices. 2019. Vol. 3. 100024. doi: 10.1016/j.medntd.2019.100024. (In Engl.).
- Köhne I. Haemolysis induced by mechanical circulatory support devices: unsolved problems // Perfusion. 2020. Vol. 35 (6). P. 474–483. doi: 10.1177/0267659120931307. (In Engl.).
- Boyarsky G. G. Razrabotka metoda proyektirovaniya mikronasosov dlya sistem podderzhki krovoobrashcheniya [Development of a design method for micropumps for circulatory support systems]. Moscow, 2022. 125 p. (In Russ.).
- Stulak J. M., Sharma S., Maltais S. Management of pump thrombosis in patients with left ventricular assist devices // American Journal of Cardiovascular Drugs. 2015. Vol. 15 (2). P. 89–94. doi: 10.1007/s40256-014-0102-3. PMID: 25567787. (In Engl.).
- Najean Y., Dresch C. Physiologie de l'hémolyse [Physiology of hemolysis] // Revue du Praticien. 1965. Vol. 15 (23). P. 2989–2994. (In Fr.).
- Levtov V. A., Regider S. A., Shadrina N. Kh. Reologiya krovi [Blood rheology]. Moscow, 1982. 269 p. (In Russ.).
- Baldwin A. C. W. [et al.]. Nonidentical Continuous-Flow Devices for Biventricular Support // Texas Heart Institute Journal. 2017. No. 2 (44). P. 141–143. doi: 10.14503/THIJ-16-5878. (In Engl.).
- Garon A., Farinas M. I. Fast three-dimensional numerical hemolysis approximation // Artificial Organs. 2004. Vol. 28 (11). P. 1016–1025. doi: 10.1111/j.1525-1594.2004.00026.x. (In Engl.).
- Mantegazza A., Tobin N., Manning K. B., Craven B. A. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients // Biomech Model Mechanobiol. 2023. Vol. 22 (2). P. 433–451. doi: 10.1007/s10237-022-01655-5. (In Engl.).
- Gu L., Smith W. Evaluation of computational models for hemolysis estimation // ASAIO Journal. 2005. Vol. 51 (3). P. 202–207. doi: 10.1097/01.MAT.0000161939.29905.93. (In Engl.).
- Giersiepen M., Wurzinger L. J., Opitz R., Reul H. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves // International Journal of Artificial Organs. 1990. Vol. 13 (5). P. 300–306. (In Engl.).
- Asakura H. Pathophysiology and classification of thrombosis // Nihon Rinsho. Japanese Journal of Clinical Medicine. 2014. Vol. 72 (7). P. 1184–1190. (In Engl.).
- Taylor J. O., Meyer R. S., Deutsch S., Manning K. B. Development of a computational model for macroscopic predictions of device-induced thrombosis // Biomech Model Mechanobiol. 2016. Vol. 15 (6). P. 1713–1731. doi: 10.1007/s10237-016-0793-2. (In Engl.).
- Wenyu J., Huanbao L., Ping N. [et al.]. Design and preparation of an artificial vascular scaffold with internal surface modification // Artificial Organs. 2024. Vol. 48. doi: 10.1111/aor.14707. (In Engl.).
- Dai W. F., Wu P., Liu G. M. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device // International Journal of Artificial Organs. 2021. Vol. 44 (7). P. 471–480. doi: 10.1177/0391398820975405. (In Engl.).
- Boyd J., Buick J. M., Green S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method // Physics of Fluids (1994-present). 2007. Vol. 19, no. 9. P. 093103. doi: 10.1063/1.2772250. (In Engl.).
- Bird R. B., Armstrong R. C., Hassager O. Dynamics of polymeric liquids. In 2 vols. Vol. 1. Fluid mechanics. 2nd ed. United States, 1987. 672 p. (In Engl.).
- Bludszuweit C. Model for a general mechanical blood damage prediction // Artificial Organs. 1995. Vol. 19 (7). P. 583–589. doi: 10.1111/j.1525-1594.1995.tb02385.x. (In Engl.).
- Blum C., Gross-Hardt S., Steinseifer U., Neidlin M. An Accelerated Thrombosis Model for Computational Fluid Dynamics Simulations in Rotary Blood Pumps // Cardiovascular Engineering and Technology. 2022. Vol. 13. doi: 10.1007/s13239-021-00606-y. (In Engl.).
补充文件
