Aluminum-based material for use in hydrogen cartridges of the hydrogen fuel cell supply system
- 作者: Nizovskii A.I.1, Belkova S.V.2, Shtripling L.O.2
-
隶属关系:
- Federal Research Center «Boreskov Institute of Catalysis SB RAS»
- Omsk State Technical University
- 期: 卷 8, 编号 4 (2024)
- 页面: 39-45
- 栏目: Статьи
- URL: https://journals.rcsi.science/2588-0373/article/view/279354
- DOI: https://doi.org/10.25206/2588-0373-2024-8-4-39-45
- EDN: https://elibrary.ru/TBJWWN
- ID: 279354
如何引用文章
全文:
详细
Materials have been developed for hydrogen cartridges using the reaction of activated massive commercial aluminum alloys with water as a hydrogen source. A wide range of industrial aluminum alloys, including secondary aluminum, as well as compacted chips, can be used as starting aluminum materials. It has been shown that activated products are stable for a long time when stored in dry conditions. Prolonged exposure to water vapor leads to loss of reactivity.
作者简介
Alexander Nizovskii
Federal Research Center «Boreskov Institute of Catalysis SB RAS»
编辑信件的主要联系方式.
Email: alexniz@inbox.ru
SPIN 代码: 9234-3580
Candidate of Chemical Sciences, Associate Professor, Senior Researcher
俄罗斯联邦, Novosibirsk, Ac. Lavrentieva Ave., 5, 630090Sofya Belkova
Omsk State Technical University
Email: sofya_belkova@mail.ru
SPIN 代码: 3650-6466
Candidate of Technical Sciences, Associate Professor, Associate Professor of Industrial Ecology and Safety Department
俄罗斯联邦, Omsk, Mira Ave., 11, 644050Lev Shtripling
Omsk State Technical University
Email: losht59@mail.ru
SPIN 代码: 9285-8565
Doctor of Technical Sciences, Professor, Head of Industrial Ecology and Safety Department
俄罗斯联邦, Omsk, Mira Ave., 11, 644050参考
- Belitskus D. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen // Journal of the Electrochemical Society. 1970. Vol. 117, no. 8. P. 1097–1099. doi: 10.1149/1.2407730. (In Engl.).
- Sheyndlin A. E., Zhuk A. Z. Kontseptsiya alyumovodorodnoy energetiki [The concept of Alum-hydrogenated energy] // Rossiyskiy khimicheskiy zhurnal. Rossiyskiy khimicheskiy zhurnal. 2006. Vol. L, no. 6. P. 105–108. EDN: HZYYVX. (In Russ.).
- Sheyndlin A. E., Zhuk A. Z. Alyumovodorodnaya energetika: printsipy i tekhnologii [Aluminohydrogen energy: principles and technologies] // Vestnik Rossiyskoy аkademii nauk. Vestnik Rossijskoj akademii nauk. 2010. Vol. 80, no. 2. P. 143–148. EDN: LOKEXR. (In Russ.).
- Srivastava A., Meshram A. On trending technologies of aluminium dross recycling: A review // Process Safety and Environmental Protection. 2023. Vol. 171. P. 38–54. doi: 10.1016/j.psep.2023.01.010. (In Engl.).
- Deng Z-Y., Ferreira J. M. F., Sakka Y. Hydrogen-generation materials for portable applications // Journal of the American Ceramic Society. 2008. Vol. 91, no. 12. P. 3825–3834. doi: 10.1111/j.1551-2916.2008.02800. (In Engl.).
- Razavi-Tousi S. S., Szpunar J. A. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water // Journal of Alloys and Compounds. 2016. Vol. 679. P. 364–374. doi: 10.1016/j.jallcom.2016.04.038. (In Engl.).
- Ching-Yuan Ho. Hydrolytic reaction of waste aluminum foils for high efficiency of hydrogen generation // International Journal of Hydrogen Energy. 2017. Vol. 42, no. 31. P. 19622–19628. doi: 10.1016/j.ijhydene.2017.06.104. (In Engl.).
- Kaur P., Verma. G. A critical assessment of aluminum-water reaction for on-site hydrogen-powered applications // Materials Today Energy. 2024. Vol. 40. 2024101508. doi: 10.1016/j.mtener.2024.101508. (In Engl.).
- Deng-Hui X., Yu-Ping Q., Ping W. Rapid hydrogen generation from the reaction of aluminum/activated charcoal composite with alkaline solution // Journal of Alloys and Compounds. 2023. Vol. 947. 169611. doi: 10.1016/j.jallcom.2023.169611. (In Engl.).
- Trowell K. A., Goroshin S., Frost D. L., Bergthorson J. M. The use of supercritical water for the catalyst-free oxidation of coarse aluminum for hydrogen production // Sust. Energy Fuels. 2020. Vol. 4, no. 11. P. 5628–5635. doi: 10.1039/d0se00996b. (In Engl.).
- Kravchenko O. V., Semenenko K. N., Bulychev B. M., Kalmykov K. B. Activation of aluminum metal and its reaction with water // Journal of Alloys and Compounds. 2005. Vol. 397. P. 58–62. doi: 10.1016/j.jallcom.2004.11.065. (In Engl.).
- Parmuzina A. V., Kravchenko O. V. Activation of aluminium metal to evolve hydrogen from water // Int. J. Hydrogen Energy. 2008. Vol. 33. P. 3073–3076. doi: 10.1016/j.ijhydene.2008.02.025. (In Engl.).
- Huang X., Gao T., Pan X. [et al.]. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications // Journal of Power Sources. 2013. Vol. 229. P. 133–140. doi: 10.1016/j.jpowsour.2012.12.016. (In Engl.).
- Dawood F., Anda M., Shafiullah G. M. Hydrogen production for energy: An overview // Int. J. Hydrogen Energy. 2020. Vol. 45. P. 3847–3869. doi: 10.1016/j.ijhydene.2019.12.059. (In Engl.).
- Liang G.-qiang, Liu Y., Cheni P.-fei [et al.]. Hydrogen production via hydrolysis of Al-eutectic GaInSn composites // Trans. Nonferrous Met. Soc. China. 2023. Vol. 33. P. 2751–2760. doi: 10.1016/S1003-6326(23)66295-8. (In Engl.).
- Zhu L., Zou M., Zhang X. [et al.]. Enhanced hydrogen generation performance of Al-Rich alloys by a melting-mechanical crushing-ball milling method // Materials. 2021. Vol. 14. 7889. doi: 10.3390/ma14247889. (In Engl.).
- Wang H., Chang Y., Dong Sh. [et al.]. Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism // Int. J. Hydrogen Energy. 2013. Vol. 38, no. 3. P. 1236–1243. doi: 10.1016/j.ijhydene.2012.11.034. (In Engl.).
- Nizovskii A. I., Kulikov A. V., Trenikhin M. V., Bukhtiyarov V. I. Material for compact hydrogen cartridges based on commercial aluminium alloys activated by Ga–In eutectics // Catalysis for Sustainable Energy. 2017. Vol. 4. P. 62–66. doi: 10.1515/cse-2017-0010. (In Engl.).
- Zhuk A. Z., Shkolnikov E. I., Borodina T. I. [et al.]. Aluminium — water hydrogen generator for domestic and mobile application // Applied Energy. 2023. Vol. 334. 120693. doi: 10.1016/j.apenergy.2023.120693. (In Engl.).
- Trenikhin M. V., Bubnov A. V., Kozlov A. G., Nizovskiy A. I., Duplyakin V. K. Proniknoveniye komponentov indiy-galliyevogo splava v alyuminiy [The penetration of indium-gallium melt components into aluminum] // Zhurnal fizicheskoy khimii. Russian Journal of Physical Chemistry. 2006. Vol. 80, no. 7. P. 1262–1267. EDN: HUZPYN. (In Russ.).
- Trenikhin M. V., Bubnov A. V., Nizovskiy A. I., Duplyakin V. K. Vzaimodeystviye evtektiki sistemy In–Ga c alyuminiyem i yego splavami [Chemical interaction of the In-Ga eutectic with al and al-base alloys] // Neorganicheskiye materialy. Inorganic Materials. 2006. Vol. 42, no. 3. P. 298–303. EDN: HSWENP. (In Russ.).
- Rehbinder P. A., Shchukin E. D. Surface phenomena in solids during deformation and fracture processes // Progress in Surface Science. 1972. Vol. 3, no. 2. P. 97–104. doi: 10.1016/0079-6816(72)90011-1. (In Engl.).
补充文件
