Abstract

For millennia, mankind has dreamed of creating an artificial creature capable of thinking and acting “like human beings”. These dreams are gradually starting to come true. The trends in the development of modern society, taking into account the increasing level of its informatization, require the use of new technologies for information processing and assistance in decision-making. Expanding the boundaries of the use of artificial intelligence requires not only the establishment of ethical restrictions, but also gives rise to the need to promptly resolve legal problems, including criminal and procedural ones. This is primarily due to the emergence and spread of legal expert systems that predict the decision on a particular case, based on a variety of parameters. Based on a comprehensive study, we formulate a definition of artificial intelligence suitable for use in law. It is proposed to understand artificial intelligence as systems capable of interpreting the received data, making optimal decisions on their basis using self-learning (adaptation). The main directions of using artificial intelligence in criminal proceedings are: search and generalization of judicial practice; legal advice; preparation of formalized documents or statistical reports; forecasting court decisions; predictive jurisprudence. Despite the promise of using artificial intelligence, there are a number of problems associated with a low level of reliability in predicting rare events, self-excitation of the system, opacity of the algorithms and architecture used, etc.

About the authors

Igor I. Kartashov

Russian State University of Justice

Author for correspondence.
Email: iik_vrn@mail.ru
ORCID iD: 0000-0003-0772-803X

Candidate of Law, Associate Professor, Associate Professor of Criminal Procedure Law Department

Russian Federation, 69 Novocheryomushkinskaya St., Moscow 117418, Russian Federation

Ivan I. Kartashov

Limited Liability Company “Smart Result”

Email: iv.cartashow@gmail.com
ORCID iD: 0000-0001-9617-5531

Junior Lawyer

Russian Federation, 7 Profsoyuznaya St., Moscow 117393, Russian Federation

References

  1. Smolin D.V. Vvedeniye v iskusstvennyy intellekt: Konspekt lektsiy [Introduction to Artificial Intelligence: Lecture Notes]. Moscow, Fizmatlit Publ., 2004, 208 p. (In Russian).
  2. Bellman R.E. An Introduction to Artificial Intelligence: Can Computers Think? San Francisco, Boyd & Fraser Publishing Company, 1978, 146 p.
  3. Charniak E., McDermott D. Introduction to Artificial Intelligence. Massachusetts, Addison-Wesley Publ., 1985, 57 p.
  4. Rich E., Knight K. Artificial Intelligence (second ed.). New York, McGraw-Hill Publ., 1991, 639 p.
  5. Poole D., Mackworth A.K., Goebel R. Computational intelligence: A logical approach. Oxford, United Kingdom, Oxford University Press, 1998, 576 p.
  6. Tyuring A. Vychislitel’nyye mashiny i razum [Computing Machines and the Mind]. Moscow, AST Publ., 2019, 128 p. (In Russian).
  7. Katz D.M., Bommarito M.J., Blackman J. A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE, 2017, no. 12 (4). Available at: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0174698&type =printable (accessed 10.12.2019).
  8. Larina E.S., Ovchinskiy V.S. Iskusstvennyy intellekt. Etika i pravo. («Kollektsiya Izborskogo kluba») [Artificial Intelligence. Ethics and Law. (“Collection of the Izborsk Club”)]. Moscow, Knizhny Mir Publ., 2020, 192 p. (In Russian).
  9. Meijer А., Wessels M. Predictive policing: review of benefits and drawbacks. International Journal of Public Administration, 2019, no. 12, pp. 1031-1039.
  10. Sutherland A.A. et al. Sexual violence risk assessment: an investigation of the interrater reliability of professional judgments made using the risk for sexual violence protocol. International Journal of Forensic Mental Health, 2012, vol. 11, no. 2, pp. 571-588.
  11. Grimm C.M., Smart W.D., Hartzog W. An education theory of fault for autonomous systems. Proceedings of We Robot 2017. New Haven, 2017, pp. 117-121. Available at: https://dl.acm.org/doi/10.1145/3278721.3278732 (accessed 19.12.2020).
  12. Aycock J., Copplestone T. Entombed: an archaeological examination of an atari 2600 game. The Art, Science, and Engineering of Programming, 2019, vol. 3, issue 2. Available at: http://arxiv.org/abs/1811.02035 (accessed 15.12.2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kartashov I.I., Kartashov I.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».