Method of calculating the fuel combustion efficiency in the afterburner combustion chamber of a gas turbine dual fuel engine


Cite item

Full Text

Abstract

The problem of reducing the emission of unburned hydrocarbons and carbon monoxide that affect the value of fuel combustion efficiency in the afterburner combustion chamber of a gas turbine engine is considered. An analysis of the causes of hydrocarbon and carbon monoxide formation were carried out and ways to reduce them were identified. The chemical and physical process of the combustion of hydrocarbon fuel with the addition of gaseous hydrogen to its composition is considered with an assessment of the emission of unburned hydrocarbons and carbon monoxide. A method for calculating the fuel combustion efficiency in the afterburner combustion chamber of a gas turbine engine with a dual-fuel power supply system is proposed. It is shown that the application of the developed technique makes it possible to estimate the value of the combustion efficiency and maintain its set value by correcting the percentage ratio of hydrogen to kerosene. The technique was tested during an experimental study of the hydrogen-air mixture combustion in the model compartment of the afterburner combustion chamber of a commercial gas turbine engine.

About the authors

A. V. Zhuk

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Author for correspondence.
Email: zhuck.aleks.n@yandex.ru

Associate Professor of the Department of Aircraft Engines

Russian Federation

T. V. Grasko

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Email: grasko83@mail.ru

Candidate of Science (Engineering), Associate Professor, Deputy Head of the Faculty of Aircraft

Russian Federation

A. S. Kolesnikov

Military Educational and Scientific Center of the Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin

Email: sanekkolesnikov1987@rambler.ru

Candidate of Science (Engineering), Senior Lecturer at the Department of Aircraft Engines

Russian Federation

V. V. Raznoschikov

Central Institute of Aviation Motors

Email: raznoschikov@mail.ru

Doctor of Science (Engineering), Associate Professor, Leading Researcher

Russian Federation

References

  1. Zakvasin A.S., Komarova E.A. Naslednik Tu-144: kak razvivaetsya proekt rossiyskogo grazhdanskogo sverkhzvukovogo samoleta [Successor of the Tu-144: how the project of the Russian civil supersonic aircraft is developing]. Available at: https://ru.rt.com/fzhu
  2. Mingazov B.G. Vnutrikamernye protsessy i avtomatizirovannaya dovodka kamer sgoraniya GTD [Intrachamber processes and automated refinement of combustion chambers of gas turbine engines]. Kazan: Kazan State Technical University Publ., 2000. 168 p.
  3. Zubrilin I.A. Metodika opredeleniya granitsy bednogo sryva plameni v kamerakh sgoraniya gazoturbinnykh ustanovok. Dis. … kand. tekhn. nauk [Methodology for determining the boundary of lean flameout in the combustion chambers of gas turbine power plants. Thesis for a Candidate Degree in Science (Engineering)]. Samara, 2016. 169 p.
  4. Gur'yanov A.I. Issledovanie emissionnykh kharakteristik goreniya v protivotochnykh zakruchennykh techeniyakh. Sbornik Trudov Shestoy Vserossiyskoy Konferentsii po Teploobmenu (October, 27-31, 2014, Moscow). Moscow: Izdatel'skiy Dom MEI Publ., 2014. P. 430-433. (In Russ.)
  5. Konovalova A.V., Kozhinov V.F., Kharitonov V.F. Metod predvaritel'nogo proektirovaniya kamer sgoraniya GTD. Sb. Trudov «Problemy i Perspektivy Razvitiya Dvigatelestroeniya». Iss. 3, part 2. Samara: Samara State University of Aerospace Publ., 1999. P. 184-189. (In Russ.)
  6. Kudryavtsev A.V., Medvedev V.V. Forsazhnye kamery i kamery sgoraniya PVRD. Inzhenernye metodiki rascheta kharakteristik [Afterburners and combustion chambers of ramjet engines. Engineering methods for calculating characteristics]. Moscow: CIAM Publ., 2013. 137 p.
  7. Teoriya kamery sgoraniya [Combustion chamber theory / ed. by O.A. Rudakov]. St. Petersburg: Nauka Publ., 2010. 228 p.
  8. Shchetinkov E.S. Fizika goreniya gazov [Physics of gas combustion]. Moscow: Nauka Publ., 1965. 739 p.
  9. Doroshenko V.E. O protsesse goreniya v kamere gazoturbinnogo dvigatelya. Sb. Dokladov «Tret'e Vsesoyuznoe Soveshchanie po Teorii Goreniya». V. 2. Moscow: AN SSSR Publ., 1960. P. 262-269. (In Russ.)
  10. Didenko A.A. Teoriya i raschet kamer sgoraniya VRD. Chast' II. Otsenka ekologicheskikh pokazateley kamer sgoraniya GTD: ucheb. posobie dlya kursovogo i diplomnogo proektirovaniya [Theory and calculation of combustion chambers of air-breathing jet engines. Part II. Assessment of the environmental performance of the combustion chambers of a gas turbine engine: study guide for preparing course and diploma papers]. Samara: Samara State Aerospace University Publ., 2012. 54 p.
  11. Lefebvre A.H. Gas turbine combustion. Hemisphere Pub. Corp., 1983. 531 p.
  12. Kozlov V.E., Titova N.S., Torokhov S.A. Numerical study of the effect of hydrogen or syngas additions to n-decane on the harmful substance emission from a homogeneous combustion chamber. Russian Journal of Physical Chemistry B. 2020. V. 14, Iss. 3. P. 395-406. doi: 10.1134/S1990793120030082
  13. Shaykin A.P., Galiev I.R. Effect of turbulent flame propagation velocity and zone width on the unburnt hydrocarbon concentration and combustion efficiency in a spark-ignition engine. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering. 2019. No. 4. P. 111-123. (In Russ.). doi: 10.18698/0236-3941-2019-4-111-123
  14. Korotaeva T.A., Turchinovich A.O. Peculiarities of pollutant forming at complete and incomplete combustion of aviation fuel. Vestnik Priamurskogo Gosudarstvennogo Universiteta im. Sholom-Aleykhema. 2015. No. 2 (19). P. 45-59. (In Russ.)
  15. Warnatz J., Maas U., Dibble R.W. Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Berlin: Springer, 2001. 299 p.
  16. Zhuk A.V., Grasko T.V., Kolesnikov A.S., Usarchuk S.S., Yaroslavtsev S.V., Golovneva T.I. Isparitel'-smesitel' zhidkostno-gazovyy [Liquid-gas evaporator-mixer]. Patent RF, no. 2829998, 2024. (Publ. 11.11.2024, bull. no. 32)
  17. Orlov M.Yu., Lukachev S.V., Matveev S.G. Modelirovanie protsessov v kamere sgoraniya: ucheb. posobie [Modeling processes in the combustion chamber: a textbook]. Samara: Samara University Publ., 2017. 292 p.
  18. Dubovkin N.F. Spravochnik po uglevodorodnym toplivam i ikh produktam sgoraniya [Handbook of hydrocarbon fuels and their combustion products]. Moscow-Leningrad: Gosenergoizdat Publ., 1962. 288 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).