Influence of the design concept of an experimental demonstration model of a rocket design element on the process of heat and mass transfer
- 作者: Trushlyakov V.I.1, Surikova Y.V.1, Davydovich D.Y.1
-
隶属关系:
- Omsk State Technical University
- 期: 卷 24, 编号 2 (2025)
- 页面: 61-73
- 栏目: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journals.rcsi.science/2542-0453/article/view/311522
- DOI: https://doi.org/10.18287/2541-7533-2025-24-2-61-73
- ID: 311522
如何引用文章
全文:
详细
A conceptual design of an experimental demonstration model of three-layer structure of a launch vehicle body is proposed, based on the replacement of aluminum honeycomb filler with an energy-related material, in particular, based on composite solid rocket propellants. When energy-related material is burned under vacuum conditions, pyrolysis occurs in the experimental demonstration model material, including thermal destruction of the experimental demonstration model material. The efficiency criterion for the heat and mass exchange process during the energy-related material combustion inside the experimental demonstrator and, accordingly, the design concept of the experimental demonstrator, is the skin temperature. After the thermal destruction process is completed in the experimental demonstrator pyrolysis process, in accordance with the proposed concept of creating the experimental demonstrator aerodynamic loading is carried out to assess the degree of dispersion of the experimental demonstrator. The conducted numerical experiments showed the fundamental possibility of significant influence of the design concept of the experimental demonstrator on the skin temperature and, accordingly, an increase in the degree of thermal destruction of the skin material and the possibility of dispersion of the experimental demonstrator under aerodynamic influence. Comparisons were made with the results of physical modeling of burning the experimental demonstrator with specific energy material, which were close to the results of numerical experiments.
作者简介
V. Trushlyakov
Omsk State Technical University
编辑信件的主要联系方式.
Email: vatrushlyakov@yandex.ru
ORCID iD: 0000-0002-8444-6880
Doctor of Science (Engineering), Professor, Chief Researcher
俄罗斯联邦Yu. Surikova
Omsk State Technical University
Email: iordanyuliya@gmail.com
ORCID iD: 0000-0002-6389-4107
Candidate of Science (Engineering), Research Associate
俄罗斯联邦D. Davydovich
Omsk State Technical University
Email: d-davydovich@mail.ru
ORCID iD: 0000-0001-8778-1337
Research Associate
俄罗斯联邦参考
- Avdoshkin V.V., Averkiev N.F., Ardashov A.A., Arsen'ev V.N., Bogachev S.A., Boldyrev K.B., Bulekbaev D.A., Gribakin V.A., Dmitriev O.Yu., Eliseykin S.A., Karchin A.Yu., Kubasov I.Yu., Kuleshov Yu.V., Makov A.B., Pirogov S.Yu., Podrezov V.A., Poluarshinov A.M., Salov V.V., Silant'ev S.B., Tipaev V.V. Problemnye voprosy ispol'zovaniya trass zapuskov kosmicheskikh apparatov i rayonov padeniya otdelyayushchikhsya chastey raket kosmicheskogo naznacheniya [Problematic issues of using spacecraft launch routes and booster drop zones]. SPb: Mozhaisky Military Space Academy Publ., 2016. 372 p.
- OST 92-5156-90. Glued sandwich structures with sheeting made of carbon fibre and Aluminium honeycomb. Typical production process. Moscow: Izd-vo Standartov Publ., 1991. 37 p. (In Russ.)
- Bonetti D., Medici G., Blanco Arnao G., Salvi S., Fabrizi A., Kerr M. Reusable payload fairings: Mission Engineering and GNC challenges. Proceedings of the 8th European Conference for Aeronautics and Space Sciences (July, 01-04, 2019, Madrid, Spain). 2019. doi: 10.13009/EUCASS2019-638
- Trushlyakov V., Zharikov K., Dron' M., Iordan Yu., Davydovich D. Research of thermal loading of the separated rocket design elements in the atmospheric phase of the descent trajectory. Proceedings of the 7th European Conference for Aeronautics and Space Sciences (July, 3-6, 2017, Milan, Italy). 2017. doi: 10.13009/EUCASS2017-684
- Monogarov K., Pivkina A., Grishin L., Frolov Y., Dilhan D. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy. Acta Astronautica. 2017. V. 135. P. 69-75. doi: 10.1016/j.actaastro.2016.10.031
- Monogarov K., Trushlyakov V., Zharikov K., Dron M., Iordan Y., Davydovich D., Melnikov I., Pivkina A. Utilization of thermite energy for re-entry disruption of detachable rocket elements made of composite polymeric material. Acta Astronautica. 2017. V. 150. P. 49-55. doi: 10.1016/j.actaastro.2017.11.028
- Korchagin М.A., Gavrilov A.I., Zarko V.E., Kiskin A.B., Iordan Yu.V, Trushlyakov V.I. Self-propagating high-temperature synthesis in mechanically activated mixtures of boron carbide and titanium. Combustion, Explosion and Shock Waves. 2017. V. 53, Iss. 6. P. 669-677. doi: 10.1134/S0010508217060077
- Trushlyakov V., Panichkin А., Lempert D., Shatrov Ya., Davydovich D. Method of heating of the separated parts of launch vehicle during the atmospheric phase of the descent trajectory. Acta Astronautica. 2018. V. 157. doi: 10.1016/j.actaastro.2018.12.015
- Trushlyakov V.I., Surikova Yu.V., Davydovich D.Yu. Sposob minimizatsii zony otchuzhdeniya otdelyayushcheysya chasti stupeni rakety-nositelya i ustroystvo dlya realizatsii [Method for minimizing exclusion zone of separating part of carrier rocket stage and device for implementation]. Patent RF, no. 2820714, 2024. (Publ. 07.06.2024. bull. no. 16)
- Smerdov A.A., Tairova L.P., Baslyk K.P., Artemiev A.V., Nelyub V.A., Borodulin A.S. Experiment-calculated analysis of two types of CFRP structures for large size rocket-space structures. Engineering Journal: Science and Innovation. 2013. No. 7 (19). doi: 10.18698/2308-6033-2013-7-859
- Burdyugov S.I., Batrakova G.M., Vaisman Ya.I., Karmanov V.V. Investigation of the effects of thermal decomposition of composite materials for structural purposes. Chemical Physics and Mesoscopics. 2011. V. 13, Iss. 3. P. 319-325. (In Russ.)
- Smerdov A.A., Tairova L.P., Bahtin A.G., Polinovskiy V.P. Experimental study of temperature and force actions on load-carrying structures of carrier rockets under conditions corresponding to normal operation. Herald of the Bauman Moscow State Technical University. 2012. No. 8 (8). doi: 10.18698/2308-6033-2012-8-452
- Tairova L.P., Fan Sh.T. Experimental study of multi-walled composite shell fragments under thermal force effects. Science and Education of the Bauman MSTU. 2015. No. 8. P. 87-99. (In Russ.). doi: 10.7463/0815.0791764
- Li H., Lv H., Zhang T., Han Q., Liu J., Xiong J., Guan Z. Modeling and evaluation of dynamic degradation behaviours of carbon fibre-reinforced epoxy composite shells. Applied Mathematical Modelling. 2022. V. 104. P. 21-33. doi: 10.1016/j.apm.2021.11.015
- Trushlyakov V.I., Zharikov K.I., Lempert D.B., Yanovskii L.S. Polymer materials for combustion of discarded parts of aerospace vehicles. Russian Journal of Applied Chemistry. 2021. V. 94, Iss. 1. P. 94-98. doi: 10.1134/S1070427221010134
- Mallick P.K. Fiber-reinforced composites: Materials, manufacturing, and design. Boca Raton: CRC press, 2007. 638 p. doi: 10.1201/9781420005981
- Mosquera M.G., Jamond M., Martínez-Alonso A., Tascón Juan M.D. Thermal transformations of Kevlar aramid fibers during pyrolysis: Infrared and thermal analysis studies. Chemistry of Materials. 1994. V. 6, Iss. 11. P. 1918-1924. doi: 10.1021/cm00047a006
- Bao Y., Ma Y., Zheng Z., Yang Y., Ji X. A thermal conductivity computation model of the carbon fiber reinforced polymer/aramid fiber reinforced polymer laminate considering the bi‐material composite interfaces. Polymer Composites. 2023. V. 44, Iss. 5. P. 2735-2744. doi: 10.1002/pc.27275
- Cecen V., Tavman I.H., Kök M., Aydogdu Y. Epoxy‐and polyester‐based composites reinforced with glass, carbon and aramid fabrics: Measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry. Polymer Composites. 2009. V. 30, Iss. 9. P. 1299-1311. doi: 10.1002/pc.20695
- Yashas Gowda T.G., Vinod A., Madhu P., Mavinkere Rangappa S., Siengchin S., Jawaid M. Mechanical and thermal properties of flax/carbon/kevlar based epoxy hybrid composites. Polymer Composites. 2022. V. 43, Iss. 8. P. 5649-5662. doi: 10.1002/pc.26880
- Trushlyakov V.I., Panichkin A.V. Methodology for the design of combustible structures of separating launch vehicle parts. Journal of Spacecraft and Rockets. 2021. V. 58, Iss. 4. Р. 1200-1206. doi: 10.2514/1.A34920
- Panichkin A.V., Trushlyakov V.I., Iordan Yu.V. Programma dlya rascheta geometricheskikh parametrov konstruktsii zaryada-zapolnitelya szhigaemogo demonstratora. Forma «uslozhnennyy pryamougol'nyy kanal» [Program for calculating the geometric parameters of the design of filler charge of a burned demonstrator]. Certificate of state registration of computer program no. 2020661061, 2020. (Publ. 17.09.2020, bull. no. 9)
- Arkhipov V.A., Glazunov A.A., Zolotorev N.N., Kozlov E.A., Korotkikh A.G., Kuznetsov V.T., Trushlyakov V.I. Analyzing the possibility of burning the launcher nose cone elements. Combustion, Explosion, and Shock Waves. 2023. V. 59, Iss. 5. P. 553-562. doi: 10.1134/s0010508223050039
补充文件
