Influence of the design concept of an experimental demonstration model of a rocket design element on the process of heat and mass transfer


Cite item

Full Text

Abstract

A conceptual design of an experimental demonstration model of three-layer structure of a launch vehicle body is proposed, based on the replacement of aluminum honeycomb filler with an energy-related material, in particular, based on composite solid rocket propellants. When energy-related material is burned under vacuum conditions, pyrolysis occurs in the experimental demonstration model material, including thermal destruction of the experimental demonstration model material. The efficiency criterion for the heat and mass exchange process during the energy-related material combustion inside the experimental demonstrator and, accordingly, the design concept of the experimental demonstrator, is the skin temperature. After the thermal destruction process is completed in the experimental demonstrator pyrolysis process, in accordance with the proposed concept of creating the experimental demonstrator aerodynamic loading is carried out to assess the degree of dispersion of the experimental demonstrator. The conducted numerical experiments showed the fundamental possibility of significant influence of the design concept of the experimental demonstrator on the skin temperature and, accordingly, an increase in the degree of thermal destruction of the skin material and the possibility of dispersion of the experimental demonstrator under aerodynamic influence. Comparisons were made with the results of physical modeling of burning the experimental demonstrator with specific energy material, which were close to the results of numerical experiments.

About the authors

V. I. Trushlyakov

Omsk State Technical University

Author for correspondence.
Email: vatrushlyakov@yandex.ru
ORCID iD: 0000-0002-8444-6880

Doctor of Science (Engineering), Professor, Chief Researcher

Russian Federation

Yu. V. Surikova

Omsk State Technical University

Email: iordanyuliya@gmail.com
ORCID iD: 0000-0002-6389-4107

Candidate of Science (Engineering), Research Associate

Russian Federation

D. Yu. Davydovich

Omsk State Technical University

Email: d-davydovich@mail.ru
ORCID iD: 0000-0001-8778-1337

Research Associate

Russian Federation

References

  1. Avdoshkin V.V., Averkiev N.F., Ardashov A.A., Arsen'ev V.N., Bogachev S.A., Boldyrev K.B., Bulekbaev D.A., Gribakin V.A., Dmitriev O.Yu., Eliseykin S.A., Karchin A.Yu., Kubasov I.Yu., Kuleshov Yu.V., Makov A.B., Pirogov S.Yu., Podrezov V.A., Poluarshinov A.M., Salov V.V., Silant'ev S.B., Tipaev V.V. Problemnye voprosy ispol'zovaniya trass zapuskov kosmicheskikh apparatov i rayonov padeniya otdelyayushchikhsya chastey raket kosmicheskogo naznacheniya [Problematic issues of using spacecraft launch routes and booster drop zones]. SPb: Mozhaisky Military Space Academy Publ., 2016. 372 p.
  2. OST 92-5156-90. Glued sandwich structures with sheeting made of carbon fibre and Aluminium honeycomb. Typical production process. Moscow: Izd-vo Standartov Publ., 1991. 37 p. (In Russ.)
  3. Bonetti D., Medici G., Blanco Arnao G., Salvi S., Fabrizi A., Kerr M. Reusable payload fairings: Mission Engineering and GNC challenges. Proceedings of the 8th European Conference for Aeronautics and Space Sciences (July, 01-04, 2019, Madrid, Spain). 2019. doi: 10.13009/EUCASS2019-638
  4. Trushlyakov V., Zharikov K., Dron' M., Iordan Yu., Davydovich D. Research of thermal loading of the separated rocket design elements in the atmospheric phase of the descent trajectory. Proceedings of the 7th European Conference for Aeronautics and Space Sciences (July, 3-6, 2017, Milan, Italy). 2017. doi: 10.13009/EUCASS2017-684
  5. Monogarov K., Pivkina A., Grishin L., Frolov Y., Dilhan D. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy. Acta Astronautica. 2017. V. 135. P. 69-75. doi: 10.1016/j.actaastro.2016.10.031
  6. Monogarov K., Trushlyakov V., Zharikov K., Dron M., Iordan Y., Davydovich D., Melnikov I., Pivkina A. Utilization of thermite energy for re-entry disruption of detachable rocket elements made of composite polymeric material. Acta Astronautica. 2017. V. 150. P. 49-55. doi: 10.1016/j.actaastro.2017.11.028
  7. Korchagin М.A., Gavrilov A.I., Zarko V.E., Kiskin A.B., Iordan Yu.V, Trushlyakov V.I. Self-propagating high-temperature synthesis in mechanically activated mixtures of boron carbide and titanium. Combustion, Explosion and Shock Waves. 2017. V. 53, Iss. 6. P. 669-677. doi: 10.1134/S0010508217060077
  8. Trushlyakov V., Panichkin А., Lempert D., Shatrov Ya., Davydovich D. Method of heating of the separated parts of launch vehicle during the atmospheric phase of the descent trajectory. Acta Astronautica. 2018. V. 157. doi: 10.1016/j.actaastro.2018.12.015
  9. Trushlyakov V.I., Surikova Yu.V., Davydovich D.Yu. Sposob minimizatsii zony otchuzhdeniya otdelyayushcheysya chasti stupeni rakety-nositelya i ustroystvo dlya realizatsii [Method for minimizing exclusion zone of separating part of carrier rocket stage and device for implementation]. Patent RF, no. 2820714, 2024. (Publ. 07.06.2024. bull. no. 16)
  10. Smerdov A.A., Tairova L.P., Baslyk K.P., Artemiev A.V., Nelyub V.A., Borodulin A.S. Experiment-calculated analysis of two types of CFRP structures for large size rocket-space structures. Engineering Journal: Science and Innovation. 2013. No. 7 (19). doi: 10.18698/2308-6033-2013-7-859
  11. Burdyugov S.I., Batrakova G.M., Vaisman Ya.I., Karmanov V.V. Investigation of the effects of thermal decomposition of composite materials for structural purposes. Chemical Physics and Mesoscopics. 2011. V. 13, Iss. 3. P. 319-325. (In Russ.)
  12. Smerdov A.A., Tairova L.P., Bahtin A.G., Polinovskiy V.P. Experimental study of temperature and force actions on load-carrying structures of carrier rockets under conditions corresponding to normal operation. Herald of the Bauman Moscow State Technical University. 2012. No. 8 (8). doi: 10.18698/2308-6033-2012-8-452
  13. Tairova L.P., Fan Sh.T. Experimental study of multi-walled composite shell fragments under thermal force effects. Science and Education of the Bauman MSTU. 2015. No. 8. P. 87-99. (In Russ.). doi: 10.7463/0815.0791764
  14. Li H., Lv H., Zhang T., Han Q., Liu J., Xiong J., Guan Z. Modeling and evaluation of dynamic degradation behaviours of carbon fibre-reinforced epoxy composite shells. Applied Mathematical Modelling. 2022. V. 104. P. 21-33. doi: 10.1016/j.apm.2021.11.015
  15. Trushlyakov V.I., Zharikov K.I., Lempert D.B., Yanovskii L.S. Polymer materials for combustion of discarded parts of aerospace vehicles. Russian Journal of Applied Chemistry. 2021. V. 94, Iss. 1. P. 94-98. doi: 10.1134/S1070427221010134
  16. Mallick P.K. Fiber-reinforced composites: Materials, manufacturing, and design. Boca Raton: CRC press, 2007. 638 p. doi: 10.1201/9781420005981
  17. Mosquera M.G., Jamond M., Martínez-Alonso A., Tascón Juan M.D. Thermal transformations of Kevlar aramid fibers during pyrolysis: Infrared and thermal analysis studies. Chemistry of Materials. 1994. V. 6, Iss. 11. P. 1918-1924. doi: 10.1021/cm00047a006
  18. Bao Y., Ma Y., Zheng Z., Yang Y., Ji X. A thermal conductivity computation model of the carbon fiber reinforced polymer/aramid fiber reinforced polymer laminate considering the bi‐material composite interfaces. Polymer Composites. 2023. V. 44, Iss. 5. P. 2735-2744. doi: 10.1002/pc.27275
  19. Cecen V., Tavman I.H., Kök M., Aydogdu Y. Epoxy‐and polyester‐based composites reinforced with glass, carbon and aramid fabrics: Measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry. Polymer Composites. 2009. V. 30, Iss. 9. P. 1299-1311. doi: 10.1002/pc.20695
  20. Yashas Gowda T.G., Vinod A., Madhu P., Mavinkere Rangappa S., Siengchin S., Jawaid M. Mechanical and thermal properties of flax/carbon/kevlar based epoxy hybrid composites. Polymer Composites. 2022. V. 43, Iss. 8. P. 5649-5662. doi: 10.1002/pc.26880
  21. Trushlyakov V.I., Panichkin A.V. Methodology for the design of combustible structures of separating launch vehicle parts. Journal of Spacecraft and Rockets. 2021. V. 58, Iss. 4. Р. 1200-1206. doi: 10.2514/1.A34920
  22. Panichkin A.V., Trushlyakov V.I., Iordan Yu.V. Programma dlya rascheta geometricheskikh parametrov konstruktsii zaryada-zapolnitelya szhigaemogo demonstratora. Forma «uslozhnennyy pryamougol'nyy kanal» [Program for calculating the geometric parameters of the design of filler charge of a burned demonstrator]. Certificate of state registration of computer program no. 2020661061, 2020. (Publ. 17.09.2020, bull. no. 9)
  23. Arkhipov V.A., Glazunov A.A., Zolotorev N.N., Kozlov E.A., Korotkikh A.G., Kuznetsov V.T., Trushlyakov V.I. Analyzing the possibility of burning the launcher nose cone elements. Combustion, Explosion, and Shock Waves. 2023. V. 59, Iss. 5. P. 553-562. doi: 10.1134/s0010508223050039

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).