Nonlinear equations of flexible plates deformations

Cover Page

Cite item

Full Text

Abstract

Nonlinear equations of deformation of flexible plates are formulated in general nonorthogonal coordinates with taking into account incompatible local deformations. The following assumptions are used. 1. Displacements of the plate from the reference (self-stressed) shape are restricted by the kinematic hypotheses of Kirchhoff — Love. 2. Elementary volumes constituting the reference shape can be locally transformed into an unstressed state by means of a nondegenerate linear transformation (hypothesis of local discharging). 3. Transformations inverse to local unloading, referred to as implants, can be found from the solution of the evolutionary problem simulating the successive deposition of infinitely thin layers on the front boundary surface of the plate. Geometric spaces of affine connection that model the global stress-free reference shape are constructed. The following special cases are considered: Weitzenböck space (with non-zero torsion), Riemann space (with non-zero curvature) and Weyl space (with non-zero non-metricity).

Full Text

Введение

 В настоящее время микроэлектромеханические системы (МЭМС) широко используются в разнообразных электронных и оптических устройствах DeTeresa2020. Особенность таких систем состоит в их пространственном масштабе, который может составлять порядка нескольких микрометров и менее Bhushan2005Doubler,Corigliano2018DoublerBhushan2005,Corigliano2018. Деформация упругих элементов в таком масштабе существенно зависит от факторов, которые обычно не учитываются в традиционном проектировании LychevDigilovDemin2024. К ним относятся: несовместные деформации, являющиеся источниками собственных (остаточных) напряжений, поверхностные эффекты, нелинейное взаимное влияние плоского и изгибного напряженных состояний, а также существенные изменения геометрической формы элементов из-за их высокой гибкости LychevDigilovDemin2024Doubler,Eremeyev2009Doubler,Eremeyev2015Doubler,Dedkova2022DoublerLychevDigilovDemin2024,Eremeyev2009,Eremeyev2015,Dedkova2022. Для учета этих факторов необходимо выйти за рамки классической теории упругих пластин и оболочек TimoshenkoWoinowsky-Kriger1959Doubler,Lebedev2010DoublerTimoshenkoWoinowsky-Kriger1959,Lebedev2010, рассматривая их с позиций нелинейной механики сплошных сред Truesdell2004 как упругие системы с малым параметром, соответствующим их толщине.

Первые модели, учитывающие геометрическую нелинейность, были предложены Фёпплем Foppl1907, а несколько позже фон Карманом Karman1910. Несмотря на то что соотношение между напряжениями и деформациями в этих моделях предполагалось линейным, а нелинейные члены, характеризующие связь между плоским напряженным состоянием и изгибом, определялись полуэмпирическим путем, их использование в инженерных расчетах показало результаты, близкие к наблюдаемым в экспериментах Volmir1967. Это, конечно, не решает вопроса об их обосновании, который подробно обсуждается, например, в Ciarlet1980.

Цель настоящей работы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  сделать шаг к построению полностью (геометрически и физически) нелинейной теории гибких пластин с несовместными деформациями. Для достижения цели используются методы геометрической механики континуума Marsden1994Doubler,Rakotomanana2004Doubler,Epstein2007Doubler,Epstein2010Doubler,Steinmann2015Doubler,LychKoifIDoubler,Lychev2018DoublerMarsden1994,Rakotomanana2004,Epstein2007,Epstein2010,Steinmann2015,LychKoifI,Lychev2018, позволяющие моделировать форму, свободную от напряжений, в рамках единой области, снабженной неевклидовой геометрией. Благодаря такому подходу деформация является, как и в классической механике сплошной среды, гомеоморфизмом отсчетной формы в актуальную. Отличие заключается лишь в том, что теперь отсчетная форма служит неевклидовым пространством, в то время как актуальная форма по-прежнему остается областью физического пространства. Отметим, что геометрический подход позволяет не только учесть несовместные конечные деформации, но также и поверхностные эффекты, благодаря чему удается теоретически объяснить особенности механических свойств сверхтонких элементов МЭМС.

Работа имеет следующую структуру. В разделе 1 приведен обзор основных положений геометрической теории несовместных деформаций, используемых в статье. Отсчетная форма тела с несовместными деформациями определяется в пространстве с неевклидовой связностью, благодаря чему удается сохранить привычную методологию механики сплошной среды и определять деформацию как гомеоморфизм одной формы (неевклидовой глобальной натуральной) в другую (евклидову самонапряженную). Раздел 2 посвящен определению тонкостенной конструкции произвольного вида и ее частного случая MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  пластины. При этом форма пластины предполагается произвольной и характеризуется произвольными же криволинейными координатами в плоскости осреднения. В соответствии с гипотезами Кирхгофа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Лява используется частичная асимптотика по толщинному параметру. В разделе 3 определяются подходящие меры напряжений и деформаций для пластины. Уравнение равновесия в отсчетном описании преобразуется в соответствии с этим выбором. Дивергентное слагаемое разбивается на два слагаемых MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  линейную и нелинейную (по перемещениям) части. Последний раздел 4 посвящен учету несовместных деформаций в пластине. Предложен частный вид поля локальных деформаций, и синтезирована отсчетная геометрия, соответствующая этому выбору. 

1. Общие представления несовместных деформаций

1.1 Конфигурации и деформации

В соответствии с общей методологией, сплошная среда (далее MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тело) формализуется в виде материального многообразия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  абстрактного гладкого трехмерного многообразия LeeISM2012 B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@ , характеризующего как материальный состав тела, так и его топологические свойства. Элементы материального многообразия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  суть метки частиц, формирующих тело, а топология определяет близость между ними, что позволяет в общем виде определять дифференцирование полей, заданных на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@ . Хотя структура материального многообразия может быть достаточно произвольной Thurston2001_Rus, в рамках классической нелинейной механики континуума рассматриваются лишь те из них, которые могут быть вложены в трехмерное евклидово пространство. Этим исключаются, в частности, такие многообразия, как твердотельная бутылка Клейна.

Как отмечалось, материальные многообразия достаточно абстрактны и, по образному выражению М. Эпстейна, населяют <<Платонов мир чистых идей>> Epstein2010. Вместе с тем их качественные и количественные свойства могут быть определены лишь из наблюдения за формами в физическом пространстве E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ . В соответствии с постулатами классической физики Newton1989_RusDoubler,Pars1971_RusDoublerNewton1989_Rus,Pars1971_Rus, последнее предполагается наделенным аффинно-евклидовой структурой. В явном виде

                                                             E=(E,V,vec,g), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcaaI9aGaaGik aiaadweacaaISaGaaGPaVlab=vr8wjaaiYcacaaMc8UaaeODaiaabw gacaqGJbGaaGilaiaaykW7caqINbGaaGykaiaaiYcaaaa@52B5@                                                                    (1)

 где E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@  есть континуальное множество мест; V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@  есть трехмерное вещественное векторное пространство трансляций;

             vec:E×EV, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabw gacaqGJbGaaGOoaiaaykW7caWGfbGaey41aqRaamyraiabgkziUorr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8xfXBLaaG ilaaaa@4ED6@

             (a,b) ab MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadg gacaaISaGaaGPaVlaadkgacaaIPaGaeSOPHe2aa8raaeaacaWGHbGa amOyaaGaay51Gaaaaa@42B3@

 есть отображение, сопоставляющее каждой упорядоченной паре мест соответствующую трансляцию из первого места во второе. Предполагается выполнение следующих аксиом Вейля Postnikov1979_I_Rus:

  ab + bc = ac MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGHbGaamOyaaGaay51GaGaey4kaSYaa8raaeaacaWGIbGaam4yaaGa ay51GaGaaGypamaaFeaabaGaamyyaiaadogaaiaawEniaaaa@4433@  для любых a,b,cE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiY cacaaMc8UaamOyaiaaiYcacaaMc8Uaam4yaiabgIGiolaadweaaaa@418C@  (соотношение Шаля),

 частное отображение

             vec a :EV, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODaiaabw gacaqGJbWaaSbaaSqaaiaadggaaeqaaOGaaGOoaiaaykW7caWGfbGa eyOKH46efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacq WFveVvcaaISaaaaa@4D11@

             x ax , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiablA AiHnaaFeaabaGaamyyaiaadIhaaiaawEniaiaaiYcaaaa@3F09@

 является биекцией для любой фиксированной точки aE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI Giolaadweaaaa@3B3B@ .

 Последний элемент структуры (1) есть скалярное произведение g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zaaaa@38F9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  симметричный билинейный положительно определенный функционал на V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@ . Для его действия используется альтернативное обозначение: uv:=g(u,v) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaajA hacaaI6aGaaGypaiaajEgacaaIOaGaaKyDaiaaiYcacaaMc8UaaKOD aiaaiMcaaaa@422C@ .

Форма материального многообразия B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@  определяется как образ S=ϰ(B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=ucaaI9aacfiGa e4h8dKVaaGikamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1j haiyaacqqFbaVqcaaIPaaaaa@5490@  вложения ϰ:BE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+caaI6aGaaGPa Vprr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaacqGFba VqcqGHsgIRiuaacqqFWesraaa@55E0@ , которое, следуя Ноллу Noll1967, будем называть конфигурацией. То обстоятельство, что ϰ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+aaa@4404@  должно быть вложением, вытекает из аксиомы непрерывности и принципа непроницаемости Truesdell1960. Далее предполагается, что все соответствующие формы являются ограниченными связными областями E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ , регулярными в смысле Келлогга Kellogg1967. Благодаря этому появляется возможность определить интегрирование на границах форм и использовать теорему Стокса для преобразования интегралов по границе, что необходимо для формулировки уравнений баланса.

Несмотря на то что каждая конфигурация ϰ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+aaa@4404@  подчинена свойству непроницаемости (двум различным частицам отвечают различные места), ее образ в общем случае не совпадает со всем множеством E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@ . В этой связи не имеет смысла говорить об обратном отображении ϰ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@45D9@  в соответствии с тем, как это принято в анализе. Однако обратные отображения являются необходимыми для построения теории, поскольку они позволяют формализовать деформации. Для исправления ситуации предлагается определить отображение

             ϰ ^ :Bϰ(B), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaatu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5dGa ayPadaGaaGOoaiaaykW7tuuDJXwAKzKCHTgD1jharCqr1ngBPrgigj xyRrxDYbacgaGae4xaWlKaeyOKH4Qae8h8dKVaaGikaiab+fa8cjaa iMcacaaISaaaaa@5BBF@

             Xϰ(X), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Db8yjablAAiHnrr 1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgiGae4h8dKVaaG ikaiab=Db8yjaaiMcacaaISaaaaa@5662@

 полученное сужением области прибытия исходного отображения на образ. Построенное отображение является обратимым, что и требовалось.

Деформация тела определяется как изменение его форм. В явном виде пусть ϰ 1 , ϰ 2 :BE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daWgaaWcbaGa aGymaaqabaGccaaISaGaaGPaVlab=b=a5paaBaaaleaacaaIYaaabe aakiaaiQdacaaMc8+efv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A 0vNCaGGbaiab+fa8cjabgkziUIqbaiab9btifbaa@5C75@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  произвольные конфигурации материального многообразия, образами которых являются формы S 1 = ϰ 1 (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGymaaqabaGccaaI9aacfiGae4h8dK=aaSbaaSqaaiaaigdaaeqaaO GaaGikamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaa cqqFbaVqcaaIPaaaaa@5672@  и S 2 = ϰ 2 (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGOmaaqabaGccaaI9aacfiGae4h8dK=aaSbaaSqaaiaaikdaaeqaaO GaaGikamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaa cqqFbaVqcaaIPaaaaa@5674@ . Тогда деформация есть композиция

                                                          γ:= ϰ ^ 2 ϰ ^ 1 1 : S 1 S 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG Ooaiaai2dadaqiaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfiGae8h8dKpacaGLcmaadaWgaaWcbaGaaGOmaaqabaGccq WIyiYBdaqiaaqaaiab=b=a5dGaayPadaWaa0baaSqaaiaaigdaaeaa cqGHsislcaaIXaaaaOGaaGOoaiaaykW7iuaacqGFse=udaWgaaWcba GaaGymaaqabaGccqGHsgIRcqGFse=udaWgaaWcbaGaaGOmaaqabaGc caaIUaaaaa@5A89@

Ее действие иллюстрирует следующая диаграмма:

 

 

 1.2 Евклидова геометрия форм

 Несмотря на кажущуюся первичность структуры (1), в действительности она может считаться производной, полученной исходя из следующих данных Lychev2022: 1) евклидова векторного пространства V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@ , 2) некоторого места o MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Baaaa@38FB@  (<<начала мира>>) и 3) всевозможных сдвигов из o MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Baaaa@38FB@  на векторы из V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@ . Наряду с этим пространство V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@  наделяет физическое пространство E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  структурой пространства аффинной связности Chern1999Doubler,LeeIRM2018DoublerChern1999,LeeIRM2018:

                                                       E geom =(E, T E , D E , g E , E ,d V E ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrdaWgaaWcbaGa ae4zaiaabwgacaqGVbGaaeyBaaqabaGccaaI9aGaaGikaiaadweaca aISaGaaGPaVlab=nr8unaaBaaaleaacaWGfbaabeaakiaaiYcacaaM c8Uae83aXt0aaSbaaSqaaiaadweaaeqaaOGaaGilaiaaykW7caqINb WaaSbaaSqaaiaadweaaeqaaOGaaGilaiaaykW7cqGHhis0daWgaaWc baGaamyraaqabaGccaaISaGaaGPaVlaadsgacaWGwbWaaSbaaSqaai aadweaaeqaaOGaaGykaiaaiYcaaaa@625D@                                                              (2)

 где E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  подлежащее множество мест, такое же, как и в (1), а T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFtepvdaWgaaWcbaGa amyraaqabaaaaa@4464@  и D E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFdeprdaWgaaWcbaGa amyraaqabaaaaa@4444@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  евклидова топология и гладкая структура на E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@ . Поле g E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaBa aaleaacaWGfbaabeaaaaa@39EF@  есть метрический тензор LeeISM2012, являющийся постоянным полем, значения которого в каждой точке многообразия MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  суть скалярные произведения g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zaaaa@38F9@  из структуры (1). В свою очередь метрический тензор определяет евклидову связность LeeIRM2018 E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiaadweaaeqaaaaa@3A83@  и форму объема LeeISM2012 d V E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadA fadaWgaaWcbaGaamyraaqabaaaaa@3AC1@  на E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@38D1@ , представленные последними элементами структуры (2).

Многие геометрические аспекты, связанные со структурой (2), и детальное определение составляющих ее полей могут быть найдены в работе Lychev2023_a. Подчеркнем лишь, что в рамках классической нелинейной механики представление физического пространства в виде многообразия, снабженного метрикой и связностью, находится в тени структуры (1), поскольку все поля заданы на евклидовых формах, соотношения между ними опираются на <<школьную>> геометрию и необходимости в усложнении привычных представлений нет. Методология изменяется, когда рассматриваются тела с несовместными деформациями, что, в частности, является предметом настоящего исследования. В таком случае возникает необходимость привлекать соображения неевклидовой геометрии, что влечет целесообразность в явном указании структуры (2) и ее дальнейшей модификации.

Геометрия физического пространства индуцируется на каждую из форм. Если S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая форма материального многообразия B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@ , то ее можно представить в виде структуры

                                                    S=(S, T E | S , D E | S , g E | S , E | S ,d V E | S ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=ucaaI9aGaaGik aiaadofacaaISaGaaGPaVlab=nr8unaaBaaaleaacaWGfbaabeaaki aaiYhadaWgaaWcbaGaam4uaaqabaGccaaISaGaaGPaVlab=nq8enaa BaaaleaacaWGfbaabeaakiaaiYhadaWgaaWcbaGaam4uaaqabaGcca aISaGaaGPaVlaajEgadaWgaaWcbaGaamyraaqabaGccaaI8bWaaSba aSqaaiaadofaaeqaaOGaaGilaiaaykW7cqGHhis0daWgaaWcbaGaam yraaqabaGccaaI8bWaaSbaaSqaaiaadofaaeqaaOGaaGilaiaaykW7 caWGKbGaamOvamaaBaaaleaacaWGfbaabeaakiaaiYhadaWgaaWcba Gaam4uaaqabaGccaaIPaGaaGilaaaa@69A5@                                                           (3)

 в которой SE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabgk Oimlaadweaaaa@3BA5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  подлежащее множество мест, а символ вертикальной черты | S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBa aaleaacaWGtbaabeaaaaa@3A11@  означает сужение соответствующего поля на S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@38DF@ .

В соответствии с теоремами, доказываемыми в курсе анализа на многообразиях LeeISM2012, множество S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@38DF@  является открытым в евклидовой топологии физического пространства, а геометрия на нем совпадает с евклидовой, что может быть выражено следующими соотношениями: T=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ujaai2dacaWH Waaaaa@4624@ , =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xrisjaai2dacaWH Waaaaa@455C@  и Q=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bb8rjaai2dacaWH Waaaaa@461E@ , где T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ubaa@44A4@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xrisbaa@43DC@ , Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bb8rbaa@449E@ , соответственно, кручение, кривизна и неметричность аффинной связности E | S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaacaWGtbaabeaaaaa@3C97@ . Таким образом, в рамках классической нелинейной механики форма (3) является евклидовым многообразием.

В отличие от физического пространства и форм, которые снабжены евклидовыми геометриями, никакой геометрии на материальном многообразии B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@  изначально не предполагается. Ему отвечает следующее представление:

                                                              B=(B, T B , D B ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cjaai2dacaaI OaGaamOqaiaaiYcacaaMc8+efv3ySLgznfgDOfdarCqr1ngBPrginf gDObYtUvgaiyaacqGFtepvdaWgaaWcbaGaamOqaaqabaGccaaISaGa aGPaVlab+nq8enaaBaaaleaacaWGcbaabeaakiaaiMcacaaISaaaaa@5BC9@                                                                    (4)

 где B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@38CE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  подлежащее множество меток частиц, T B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFtepvdaWgaaWcbaGa amOqaaqabaaaaa@4461@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  топология на нем, а D B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFdeprdaWgaaWcbaGa amOqaaqabaaaaa@4441@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  гладкая структура.

Однако возможность вложить B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@  в трехмерное евклидово пространство E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  накладывает ограничения на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@ . В частности, множество B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@38CE@  покрывается одной картой, индуцированной с любой из форм, а касательное расслоение TB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqaaa@4559@  является тривиальным и может быть представлено в виде прямого произведения TB=B× 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqcaaI 9aGae8xaWlKaey41aq7efv3ySLgznfgDOjdarCqr1ngBPrginfgDOb cv39gaiyaacqGFDeIudaahaaWcbeqaaiaaiodaaaaaaa@5592@ .

В работах по классической механике сплошной среды материальное многообразие часто отождествляется с одной из его форм и далее рассматривается в качестве отсчетной формы. Именно последняя приобретает статус многообразия меток, но рассматриваемого в объемлющем евклидовом пространстве. С формальной точки зрения это означает выбор некоторой конфигурации ϰ R :BE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daWgaaWcbaGa amOuaaqabaGccaaI6aGaaGPaVprr1ngBPrMrYf2A0vNCaeXbfv3ySL gzGyKCHTgD1jhaiyaacqGFbaVqcqGHsgIRiuaacqqFWesraaa@56ED@  и расширение структуры (4) до следующего геометрического пространства:

                                                       B R =(B, ϰ R g E , ϰ R E , ϰ R d V E ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaaBaaaleaa caWGsbaabeaakiaai2dacaaIOaGae8xaWlKaaGilaiaaykW7tuuDJX wAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbciab+b=a5paaDaaa leaacaWGsbaabaGaey4fIOcaaOGaaK4zamaaBaaaleaacaWGfbaabe aakiaaiYcacaaMc8Uae4h8dK=aa0baaSqaaiaadkfaaeaacqGHxiIk aaGccqGHhis0daWgaaWcbaGaamyraaqabaGccaaISaGaaGPaVlab+b =a5paaDaaaleaacaWGsbaabaGaey4fIOcaaOGaamizaiaadAfadaWg aaWcbaGaamyraaqabaGccaaIPaGaaGilaaaa@6EFB@                                                              (5)

 где символ ϰ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daqhaaWcbaGa amOuaaqaaiabgEHiQaaaaaa@45F7@  означает операцию обратного образа (pullback Abraham1988), примененную к соответствующему полю LeeISM2012Doubler,LeeIRM2018DoublerLeeISM2012,LeeIRM2018. В явном виде

             ϰ R g E | X (u,v)= g E | ϰ R (X) ( T X ϰ R (u), T X ϰ R (v)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daqhaaWcbaGa amOuaaqaaiabgEHiQaaakiaajEgadaWgaaWcbaGaamyraaqabaGcca aI8bWaaSbaaSqaamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD 1jhaiyaacqGFxapwaeqaaOGaaGikaiaajwhacaaISaGaaGPaVlaajA hacaaIPaGaaGypaiaajEgadaWgaaWcbaGaamyraaqabaGccaaI8bWa aSbaaSqaaiab=b=a5paaBaaabaGaamOuaaqabaGaaGikaiab+Db8yj aaiMcaaeqaaOGaaGikaiaadsfadaWgaaWcbaGae43fWJfabeaakiab =b=a5paaBaaaleaacaWGsbaabeaakiaaiIcacaqI1bGaaGykaiaaiY cacaaMc8UaamivamaaBaaaleaacqGFxapwaeqaaOGae8h8dK=aaSba aSqaaiaadkfaaeqaaOGaaGikaiaajAhacaaIPaGaaGykaiaaiYcaaa a@7C29@

             ϰ R d V E | X (u,v,w)=d V E | ϰ R (X) ( T X ϰ R (u), T X ϰ R (v), T X ϰ R (w)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daqhaaWcbaGa amOuaaqaaiabgEHiQaaakiaadsgacaWGwbWaaSbaaSqaaiaadweaae qaaOGaaGiFamaaBaaaleaatuuDJXwAKzKCHTgD1jharCqr1ngBPrgi gjxyRrxDYbacgaGae43fWJfabeaakiaaiIcacaqI1bGaaGilaiaayk W7caqI2bGaaGilaiaaykW7caqI3bGaaGykaiaai2dacaWGKbGaamOv amaaBaaaleaacaWGfbaabeaakiaaiYhadaWgaaWcbaGae8h8dK=aaS baaeaacaWGsbaabeaacaaIOaGae43fWJLaaGykaaqabaGccaaIOaGa amivamaaBaaaleaacqGFxapwaeqaaOGae8h8dK=aaSbaaSqaaiaadk faaeqaaOGaaGikaiaajwhacaaIPaGaaGilaiaaykW7caWGubWaaSba aSqaaiab+Db8ybqabaGccqWFWpq+daWgaaWcbaGaamOuaaqabaGcca aIOaGaaKODaiaaiMcacaaISaGaaGPaVlaadsfadaWgaaWcbaGae43f WJfabeaakiab=b=a5paaBaaaleaacaWGsbaabeaakiaaiIcacaqI3b GaaGykaiaaiMcaaaa@8B72@

 для любой точки XB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Db8yjabgIGiolab =fa8cbaa@47E8@  и любых касательных векторов u,v,w T X B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiY cacaaMc8UaaKODaiaaiYcacaaMc8UaaK4DaiabgIGiolaadsfadaWg aaWcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbai ab=Db8ybqabaGccqWFbaVqaaa@507C@  и

                                                     ( ϰ R E ) u v= ϰ ^ R {( E ) ( ϰ ^ R ) u ( ϰ ^ R ) v} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dK=aa0ba aSqaaiaadkfaaeaacqGHxiIkaaGccqGHhis0daWgaaWcbaGaamyraa qabaGccaaIPaWaaSbaaSqaaiaajwhaaeqaaOGaaKODaiaai2dadaqi aaqaaiab=b=a5dGaayPadaWaa0baaSqaaiaadkfaaeaacqGHxiIkaa GccaaI7bGaaGikaiabgEGirpaaBaaaleaacaWGfbaabeaakiaaiMca daWgaaWcbaGaaGikamaaHaaabaGae8h8dKpacaGLcmaadaWgaaqaai aadkfaaeqaaiaaiMcadaWgaaqaaiabgEHiQaqabaGaaKyDaaqabaGc caaIOaWaaecaaeaacqWFWpq+aiaawkWaamaaBaaaleaacaWGsbaabe aakiaaiMcadaWgaaWcbaGaey4fIOcabeaakiaajAhacaaI9baaaa@67B2@

для любых векторных полей u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKODaaaa@3908@  на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@ . Здесь T ϰ R :TBTE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dK=aaSba aSqaaiaadkfaaeqaaOGaaGOoaiaaykW7caWGubWefv3ySLgzgjxyRr xDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+fa8cjabgkziUkaadsfa iuaacqqFWesraaa@5978@  есть касательное отображение Abraham1988 к ϰ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daWgaaWcbaGa amOuaaqabaaaaa@4507@ , а ( ϰ ^ R ) u=T ϰ R u ϰ ^ R 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaaHa aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF Wpq+aiaawkWaamaaBaaaleaacaWGsbaabeaakiaaiMcadaWgaaWcba Gaey4fIOcabeaakiaajwhacaaI9aGaamivaiab=b=a5paaBaaaleaa caWGsbaabeaakiablIHiVjaajwhacqWIyiYBdaqiaaqaaiab=b=a5d GaayPadaWaa0baaSqaaiaadkfaaeaacqGHsislcaaIXaaaaaaa@57CE@  есть прямой образ (pushforward Abraham1988) векторного поля u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ .

Поскольку поле ( ϰ R E ) u v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dK=aa0ba aSqaaiaadkfaaeaacqGHxiIkaaGccqGHhis0daWgaaWcbaGaamyraa qabaGccaaIPaWaaSbaaSqaaiaajwhaaeqaaOGaaKODaaaa@4C23@  определено достаточно сложно, дадим необходимые пояснения. Каждое из векторных полей u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKODaaaa@3908@  является отображением вида BTB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cjabgkziUkaa dsfacqWFbaVqaaa@48FE@ , в то время как операция E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiaadweaaeqaaaaa@3A83@  действует на отображения ETE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrcqGHsgIRcaWG ubGae8hmHueaaa@468D@ . Поэтому в первую очередь поля u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKODaaaa@3908@  переносятся на E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  с сохранением их свойств. Это осуществляется при помощи прямого образа ( ϰ ^ R ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaaHa aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF Wpq+aiaawkWaamaaBaaaleaacaWGsbaabeaakiaaiMcadaWgaaWcba Gaey4fIOcabeaaaaa@4853@ . На новые поля уже можно подействовать евклидовой связностью, что приводит к полю ( E ) ( ϰ ^ R ) u ( ϰ ^ R ) v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE GirpaaBaaaleaacaWGfbaabeaakiaaiMcadaWgaaWcbaGaaGikamaa HaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacq WFWpq+aiaawkWaamaaBaaabaGaamOuaaqabaGaaGykamaaBaaabaGa ey4fIOcabeaacaqI1baabeaakiaaiIcadaqiaaqaaiab=b=a5dGaay PadaWaaSbaaSqaaiaadkfaaeqaaOGaaGykamaaBaaaleaacqGHxiIk aeqaaOGaaKODaaaa@551F@ . Но это MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  векторное поле на E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ , поэтому далее оно отображается на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@  при помощи операции обратного образа ϰ ^ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaatu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5dGa ayPadaWaa0baaSqaaiaadkfaaeaacqGHxiIkaaaaaa@46B9@ .

Структура (5) является евклидовым многообразием, а форма S R = ϰ R (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaGccaaI9aacfiGae4h8dK=aaSbaaSqaaiaadkfaaeqaaO GaaGikamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaa cqqFbaVqcaaIPaaaaa@56AA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  его гомеоморфной копией. Оба пространства B R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaaBaaaleaa caWGsbaabeaaaaa@4583@  и S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  совершенно неотличимы друг от друга, и поэтому в рамках классических рассуждений их отождествляют, полагая S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  материальным многообразием и называя его отсчетной формой. Все рассуждения проводятся относительно S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ . В настоящей работе мы также опираемся на отсчетную форму. Вместе с тем понятие материального многообразия не отбрасывается, а лишь остается в тени. При рассмотрении несовместных деформаций оно возвращается на арену, будучи снабженным неевклидовой геометрией. С такой геометрией материальное многообразие становится отсчетной формой, а конфигурации приобретают статус обобщенных деформаций. Подробно эти аспекты изложены в работе Lychev2021.

 1.3 Локальные деформации

В настоящем исследовании рассматриваются лишь гиперупругие тела, материал которых прост Truesdell2004. В этой связи движение, вызванное действием внешних полей на тело и отсчитываемое от формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , реализуется в рамках принципа стационарности действия: δA=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaI 9aGaaGimaaaa@466E@ , где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqaaa@4348@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  действие, определенное соотношением

                                                A[γ]= t 1 t 2 S R L(X,t,γ(X,t), γ ˙ (X,t),Dγ(X,t))d V R dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaIBbGaeq4S dCMaaGyxaiaai2dadaWdXbqabSqaaiaadshadaWgaaqaaiaaigdaae qaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOWaa8qu aeqaleaacqWFse=udaWgaaqaaiaadkfaaeqaaaqab0Gaey4kIipaki ab=jrimjaaiIcacaWGybGaaGilaiaaykW7caWG0bGaaGilaiaaykW7 cqaHZoWzcaaIOaGaamiwaiaaiYcacaaMc8UaamiDaiaaiMcacaaISa GaaGPaVlqbeo7aNzaacaGaaGikaiaadIfacaaISaGaaGPaVlaadsha caaIPaGaaGilaiaaykW7caWGebGaeq4SdCMaaGikaiaadIfacaaISa GaaGPaVlaadshacaaIPaGaaGykaiaayIW7caWGKbGaamOvamaaBaaa leaacaWGsbaabeaakiaayIW7caWGKbGaamiDaiaai6caaaa@7ED4@                                                      (6)

 В нем X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne Xp1aaSbaaSqaaiaadkfaaeqaaaaa@46D0@ , t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hifaaa@453C@ , а γ: S R ×E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jr8tnaaBaaaleaacaWGsbaabeaakiabgEna0orr1ngBPrwtHr hAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHiLaeyOKH4Qae8hm Hueaaa@5847@  есть гладкое отображение, удовлетворяющее условию: для любого значения момента времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  частичное отображение γ t :=γ(,t): S R S t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadshaaeqaaOGaaGOoaiaai2dacqaHZoWzcaaIOaGaeyyX ICTaaGilaiaaykW7caWG0bGaaGykaiaaiQdacaaMc8+efv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaGccqGHsgIRcqWFse=udaWgaaWcbaGaamiDaaqabaaaaa@58A6@  есть деформация отсчетной формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  в некоторую форму S t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amiDaaqabaaaaa@4491@ . Символ γ ˙ := γ t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4SdCMbai aacaaI6aGaaGypamaalaaabaGaeyOaIyRaeq4SdCgabaGaeyOaIyRa amiDaaaaaaa@40BE@  обозначает поле скорости в отсчетном описании, а Dγ:= γ X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabeo 7aNjaaiQdacaaI9aWaaSaaaeaacqGHciITcqaHZoWzaeaacqGHciIT caWGybaaaaaa@4162@  при каждом фиксированном t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  есть градиент по пространственным переменным. Они характеризуют наилучшее линейное приближение отображения γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@ :

                                           γ(X+h,t+τ)=γ(X,t)+Dγ(X,t)[h]+ γ ˙ (X,t)τ+o((h,τ)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadIfacqGHRaWkcaqIObGaaGilaiaaykW7caWG0bGaey4kaSIa eqiXdqNaaGykaiaai2dacqaHZoWzcaaIOaGaamiwaiaaiYcacaaMc8 UaamiDaiaaiMcacqGHRaWkcaWGebGaeq4SdCMaaGikaiaadIfacaaI SaGaaGPaVlaadshacaaIPaGaaG4waiaajIgacaaIDbGaey4kaSIafq 4SdCMbaiaacaaIOaGaamiwaiaaiYcacaaMc8UaamiDaiaaiMcacqaH epaDcqGHRaWkcaqIVbGaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=v IiqjaaiIcacaqIObGaaGilaiaaykW7cqaHepaDcaaIPaGae8xjIaLa aGykaiaai6caaaa@721B@

Следуя обозначениям, принятым в механике сплошной среды, для градиента Dγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabeo 7aNbaa@3A77@  будем использовать символ F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ , т. е. F=Dγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraiaai2 dacaWGebGaeq4SdCgaaa@3C0F@ .

В формуле (6) L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectaaa@4295@  есть плотность действия. Будем полагать, что она определяется равенством (в котором зависимость полей от переменных X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@ , t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  опущена ради экономии места)

                                                 L(X,t,γ, γ ˙ ,F)= 1 2 ρ R (X) γ ˙ 2 W(X,F)Φ(γ,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaIOaGaamiw aiaaiYcacaaMc8UaamiDaiaaiYcacaaMc8Uaeq4SdCMaaGilaiaayk W7cuaHZoWzgaGaaiaaiYcacaaMc8UaaKOraiaaiMcacaaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaacqaHbpGCdaWgaaWcbaGaamOuaaqaba GccaaIOaGaamiwaiaaiMcacuaHZoWzgaGaamaaCaaaleqabaGaaGOm aaaakiabgkHiTiaadEfacaaIOaGaamiwaiaaiYcacaaMc8UaaKOrai aaiMcacqGHsislcqqHMoGrcaaIOaGaeq4SdCMaaGilaiaaykW7caWG 0bGaaGykaiaaiYcaaaa@6D7C@

где ρ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkfaaeqaaaaa@3ACA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  массовая плотность в отсчетном описании, W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@38E3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  плотность упругой энергии, а Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeaaa@3981@  есть потенциал внешних массовых сил.

Используя далее стандартную вариационную технику, теперь можно получить уравнения поля и законы сохранения Lychev2018. Однако эти соотношения являются общими, и для их частного применения необходимо знать явную зависимость W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@38E3@  от F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ .

Для дальнейшего уточним, что понимается под представительным объемом: это часть формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , достаточно малая, чтобы считать ее деформации однородными, и достаточно большая, чтобы выполнялась гипотеза о термодинамическом равновесии. Теперь предположим, что некоторый представительный объем MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тестовый образец MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  извлечен из формы, предварительно разгружен и помещен в испытательную машину. Тогда из экспериментов будет получена явная зависимость W( X 0 ,F) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWGybWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaaykW7caqIgbGa aGykaaaa@3F27@  плотности W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@38E3@  от градиента деформации F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ . В ней следует предполагать точку X 0 S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIWaaabeaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfaGae8NeXp1aaSbaaSqaaiaadkfaaeqaaaaa@47C0@ , отвечающую выбранному представительному объему, фиксированной; меняется лишь линейное отображение F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ . В общем случае, выбирая разные представительные объемы, придем к разным зависимостям для плотности упругой энергии, однако в настоящей работе принимается гипотеза о материальном единообразии Noll1967: представительные объемы состоят из одного и того же материала.

Будем полагать, что представительный объем тела обладает некоторым привилегированным состоянием, которое назовем натуральным. Состояние, свободное от напряжений, может служить примером. В общем же случае охарактеризуем его значением P natural MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuamaaBa aaleaacaqGUbGaaeyyaiaabshacaqG1bGaaeOCaiaabggacaqGSbaa beaaaaa@3F9A@  тензора Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа 1-го рода. Тогда классическая механика сплошной среды основана на следующей гипотезе о глобальной разгрузке: существует деформация γ 0 : S R S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGOoaiaaykW7tuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaiab=jr8tnaaBaaaleaacaWGsbaabe aakiabgkziUkab=jr8tnaaBaaaleaacaaIWaaabeaaaaa@4E0D@  из отсчетной формы в некоторую форму S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGimaaqabaaaaa@4452@ , удовлетворяющая условию

                                                     X S R : W(X,F) F F= D Y γ 0 | Y=X = P natural . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iwaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae8NeXp1aaSbaaSqaaiaadkfaaeqaaOGaaGOoaiaaysW7daabca qaamaalaaabaGaeyOaIyRaam4vaiaaiIcacaWGybGaaGilaiaaykW7 caqIgbGaaGykaaqaaiabgkGi2kaajAeaaaaacaGLiWoadaWgaaWcba GaaKOraiaai2dacaWGebWaaSbaaeaacaWGzbaabeaacqaHZoWzdaWg aaqaaiaaicdaaeqaaiaaiYhadaWgaaqaaiaadMfacaaI9aGaamiwaa qabaaabeaakiaai2dacaqIqbWaaSbaaSqaaiaab6gacaqGHbGaaeiD aiaabwhacaqGYbGaaeyyaiaabYgaaeqaaOGaaGOlaaaa@684B@                                                           (7)

 Таким образом, представительные объемы, составляющие форму S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , могут быть согласованно переведены в натуральное состояние, что даст новую форму S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGimaaqabaaaaa@4452@ , находящуюся целиком в натуральном состоянии.

Вместе с тем гипотеза о глобальной разгрузке справедлива далеко не всегда Eckart1948. В частности, она неверна, когда тело имеет дефектную структуру (дислокации, дисклинации, метрические аномалии). В таком случае целесообразно принять гипотезу о локальной разгрузке Lychev2021. Предположим, что имеется семейство { γ (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGyFamaaBaaa leaacaWGybGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuaacqWFse=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D1D@  деформаций γ (X) : S R S (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaW baaSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaI6aGaaGPaVprr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXp1aaSbaaS qaaiaadkfaaeqaaOGaeyOKH4Qae8NeXp1aaWbaaSqabeaacaaIOaGa amiwaiaaiMcaaaaaaa@511F@ , удовлетворяющее условию

                                                    X S R : W(X,F) F F= D Y γ (X) | Y=X = P natural . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iwaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae8NeXp1aaSbaaSqaaiaadkfaaeqaaOGaaGOoaiaaysW7daabca qaamaalaaabaGaeyOaIyRaam4vaiaaiIcacaWGybGaaGilaiaaykW7 caqIgbGaaGykaaqaaiabgkGi2kaajAeaaaaacaGLiWoadaWgaaWcba GaaKOraiaai2dacaWGebWaaSbaaeaacaWGzbaabeaacqaHZoWzdaah aaqabeaacaaIOaGaamiwaiaaiMcaaaGaaGiFamaaBaaabaGaamywai aai2dacaWGybaabeaaaeqaaOGaaGypaiaajcfadaWgaaWcbaGaaeOB aiaabggacaqG0bGaaeyDaiaabkhacaqGHbGaaeiBaaqabaGccaaIUa aaaa@69D4@                                                           (8)

 В отличие от (7), производные W(X,F) F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGxbGaaGikaiaadIfacaaISaGaaGPaVlaajAeacaaIPaaa baGaeyOaIyRaaKOraaaaaaa@41E4@  теперь вычисляются для градиентов от различных элементов семейства деформаций, а не от одной деформации. Это отражает то обстоятельство, что в общем случае представительные объемы, составляющие форму S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , не могут согласованно перейти в натуральное состояние и образовать некоторую глобальную форму S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGimaaqabaaaaa@4452@ .

Следуя подходу, принятому в континуальной теории дефектов Kroener1959, для каждой точки X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne Xp1aaSbaaSqaaiaadkfaaeqaaaaa@46D0@  определим тензор

                                                             H X := D Y γ (X) | Y=X . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaBa aaleaacaWGybaabeaakiaaiQdacaaI9aGaamiramaaBaaaleaacaWG zbaabeaakiabeo7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaaaO GaaGiFamaaBaaaleaacaWGzbGaaGypaiaadIfaaeqaaOGaaGOlaaaa @45EB@                                                                   (9)

 Тогда свойство (8) принимает вид

                                                       X S R : W(X,F) F F= H X = P natural . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iwaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae8NeXp1aaSbaaSqaaiaadkfaaeqaaOGaaGOoaiaaysW7daabca qaamaalaaabaGaeyOaIyRaam4vaiaaiIcacaWGybGaaGilaiaaykW7 caqIgbGaaGykaaqaaiabgkGi2kaajAeaaaaacaGLiWoadaWgaaWcba GaaKOraiaai2dacaqIibWaaSbaaeaacaWGybaabeaaaeqaaOGaaGyp aiaajcfadaWgaaWcbaGaaeOBaiaabggacaqG0bGaaeyDaiaabkhaca qGHbGaaeiBaaqabaGccaaIUaaaaa@6229@                                                           (10)

 В этой связи тензор H X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaBa aaleaacaWGybaabeaaaaa@39E3@  характеризует деформацию представительного объема, окружающего точку X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@ , в натуральное состояние. По этой причине будем называть H X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaBa aaleaacaWGybaabeaaaaa@39E3@  локальной деформацией. Поскольку распределение дефектов предполагается непрерывным, то будем полагать, что поле

                                                                H:X H X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisaiaaiQ dacaaMc8UaamiwaiablAAiHjaajIeadaWgaaWcbaGaamiwaaqabaaa aa@3F9B@

является гладким. Заметим, что это поле получено по некоторому семейству деформаций { γ (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGyFamaaBaaa leaacaWGybGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuaacqWFse=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D1D@ . Но можно поступить и иначе, как это принято в теории дефектов: сразу определить поле H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisaaaa@38DA@ , значения которого удовлетворяют (10). С формальной точки зрения оба подхода эквивалентны, поскольку соответствующее семейство { γ (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGyFamaaBaaa leaacaWGybGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuaacqWFse=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D1D@  можно восстановить. Однако для дальнейших построений подход, связанный с семейством деформаций, представляется нам более предпочтительным.

 1.4 Неевклидова отсчетная форма

В терминах поля локальных деформаций H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisaaaa@38DA@  можно аналитически выразить свойство отсутствия глобальной натуральной формы. Действительно, локальные деформации совместны, если существует глобальная деформация γ 0 : S R S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGOoaiaaykW7tuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaiab=jr8tnaaBaaaleaacaWGsbaabe aakiabgkziUkab=jr8tnaaBaaaleaacaaIWaaabeaaaaa@4E0D@ , такая, что D γ 0 =H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabeo 7aNnaaBaaaleaacaaIWaaabeaakiaai2dacaqIibaaaa@3D01@ . Здесь S 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa aGimaaqabaaaaa@4452@  и есть глобально натуральная форма. В противном случае локальные деформации несовместны. В дальнейшем будем считать отсчетную форму S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  односвязной LeeITM2011. Тогда из теории потенциала Kellogg1967 известно, что тензорное поле второго ранга является градиентом некоторого точечного отображения в том и только в том случае, когда его ротор равен нулю. В этой связи условие совместности локальных деформаций может быть записано в виде равенства curlH=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabw hacaqGYbGaaeiBaiaayIW7caqIibGaaGypaiaahcdaaaa@3FAD@ . Нарушение этого равенства означает, что локальные деформации несовместны. Теперь, представляя источник несовместности (в частности, плотность дефектов) в виде тензорного поля второго ранга η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae83TdG gaaa@39BB@ , можно записать соотношение

                                                                curlH=η, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabw hacaqGYbGaaeiBaiaayIW7caqIibGaaGypaGGadiab=D7aOjaaiYca aaa@415E@                                                                     (11)

 связывающее поле локальных деформаций с источником η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae83TdG gaaa@39BB@ . Дальнейшие рассуждения должны использовать (11) как одно из уравнений системы, характеризующей напряженно-деформированное состояние тела.

Однако можно поступить иначе. Поскольку в каждой точке X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne Xp1aaSbaaSqaaiaadkfaaeqaaaaa@46D0@  тензор H X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaBa aaleaacaWGybaabeaaaaa@39E3@  является обратимым линейным преобразованием, приходим к полю

                                                               H 1 :X H X 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaaiQdacaaMc8UaamiwaiablAAi HjaajIeadaqhaaWcbaGaamiwaaqaaiabgkHiTiaaigdaaaaaaa@4323@

обратных локальных деформаций. Тогда соотношение (11) эквивалентно соотношению

                                                              H 1 curlH= H 1 η. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaabogacaqG1bGaaeOCaiaabYga caaMi8UaaKisaiaai2dacaqIibWaaWbaaSqabeaacqGHsislcaaIXa aaaGGadOGae83TdGMaaGOlaaaa@46C4@

Левая часть полученного соотношения есть не что иное, как свертка ϵ:T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8caaMb8UaaGOo aiaaygW7tuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacga Gae43eWtfaaa@5479@  тензора Леви-Чивита ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8aaa@4403@  и кручения T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ubaa@44A4@  связности Вайценбока Bilby1955Doubler,Kroener1959Doubler,Noll1967Doubler,Yavari2012DoublerBilby1955,Kroener1959,Noll1967,Yavari2012! Таким образом, кинематическое уравнение (11) заменяется геометрическим:

                                                                 T= T 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ujaai2dacqWF tapvdaWgaaWcbaGaaGimaaqabaGccaaISaaaaa@48ED@

и, следовательно, кручение приобретает статус плотности дефектов (дислокаций) Miri2002.

Рассуждения, проведенные выше, неявно предполагали, что дефекты представлены дислокациями. Однако возможны и дисклинации и точечные дефекты Anthony1970Doubler,Anthony1971DoublerAnthony1970,Anthony1971. Общая геометрическая идея, таким образом, состоит в следующем Lychev2021. <<Сотрем>> геометрию с отсчетной формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , представленной структурой

                                                 S R =( S R , T E | S R , D E | S R , g E | S R , E | S R ,d V E | S R ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaGccaaI9aGaaGikaiaadofadaWgaaWcbaGaamOuaaqaba GccaaISaGaaGPaVlab=nr8unaaBaaaleaacaWGfbaabeaakiaaiYha daWgaaWcbaGaam4uamaaBaaabaGaamOuaaqabaaabeaakiaaiYcaca aMc8Uae83aXt0aaSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaa caWGtbWaaSbaaeaacaWGsbaabeaaaeqaaOGaaGilaiaaykW7caqINb WaaSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaacaWGtbWaaSba aeaacaWGsbaabeaaaeqaaOGaaGilaiaaykW7cqGHhis0daWgaaWcba GaamyraaqabaGccaaI8bWaaSbaaSqaaiaadofadaWgaaqaaiaadkfa aeqaaaqabaGccaaISaGaaGPaVlaadsgacaWGwbWaaSbaaSqaaiaadw eaaeqaaOGaaGiFamaaBaaaleaacaWGtbWaaSbaaeaacaWGsbaabeaa aeqaaOGaaGykaiaaiYcaaaa@7097@

и оставим лишь подлежащее многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , т. е.

                                                          S R =( S R , T E | S R , D E | S R ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaakiaai2dacaaIOaGaam4uamaaBaaaleaacaWGsbaabe aakiaaiYcacaaMc8+efv3ySLgznfgDOfdarCqr1ngBPrginfgDObYt UvgaiyaacqGFtepvdaWgaaWcbaGaamyraaqabaGccaaI8bWaaSbaaS qaaiaadofadaWgaaqaaiaadkfaaeqaaaqabaGccaaISaGaaGPaVlab +nq8enaaBaaaleaacaWGfbaabeaakiaaiYhadaWgaaWcbaGaam4uam aaBaaabaGaamOuaaqabaaabeaakiaaiMcacaaIUaaaaa@6436@

Затем, принимая во внимание структуру дефектов, <<синтезируем>> подходящую геометрию на многообразии S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , что приводит к неевклидову в общем случае пространству аффинной связности:

                                                            S R =( S R ,G,,dV). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGsbaabeaakiaai2dacaaIOaWefv3ySLgzgjxyRrxDYbqe guuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaacaWGsbaabe aakiaaiYcacaaMc8UaaK4raiaaiYcacaaMc8Uaey4bIeTaaGilaiaa ykW7caWGKbGaamOvaiaaiMcacaaIUaaaaa@5557@                                                                 (12)

 Здесь G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raaaa@38D9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  риманова метрика на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIenaaa@398D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  аффинная связность на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , а dV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadA faaaa@39CB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  форма объема, порожденная метрикой G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raaaa@38D9@ .

Инварианты связности MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  кручение T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ubaa@44A4@ , кривизна MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xrisbaa@43DC@  и неметричность Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bb8rbaa@449E@  служат мерами несовместности локальных деформаций и, соответственно, плотностями дефектов. Пространство (12), таким образом, приобретает статус глобальной натуральной формы, наделенной неевклидовой геометрией.

В работе рассматривается лишь частный случай, когда несовместность локальных деформаций полностью характеризуется кривизной связности. Последняя является связностью Леви-Чивита, порожденной метрикой G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raaaa@38D9@ . Для синтезирования метрики используем следующее рассуждение Lychev2021. Пусть X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF sa=udaWgaaWcbaGaamOuaaqabaaaaa@4806@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  произвольная точка, а γ (X) : S R S (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaW baaSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaI6aGaaGPaVprr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXp1aaSbaaS qaaiaadkfaaeqaaOGaeyOKH4Qae8NeXp1aaWbaaSqabeaacaaIOaGa amiwaiaaiMcaaaaaaa@511F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  соответствующая деформация из семейства. Форма S (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaahaaWcbeqa aiaaiIcacaWGybGaaGykaaaaaaa@45DB@  есть структура вида (3),

                                             S (X) =( S (X) , T E | S (X) , D E | S (X) , g E | S (X) , E | S (X) ,d V E | S (X) ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaahaaWcbeqa aiaaiIcacaWGybGaaGykaaaakiaai2dacaaIOaGaam4uamaaCaaale qabaGaaGikaiaadIfacaaIPaaaaOGaaGilaiaaykW7cqWFtepvdaWg aaWcbaGaamyraaqabaGccaaI8bWaaSbaaSqaaiaadofadaahaaqabe aacaaIOaGaamiwaiaaiMcaaaaabeaakiaaiYcacaaMc8Uae83aXt0a aSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaacaWGtbWaaWbaae qabaGaaGikaiaadIfacaaIPaaaaaqabaGccaaISaGaaGPaVlaajEga daWgaaWcbaGaamyraaqabaGccaaI8bWaaSbaaSqaaiaadofadaahaa qabeaacaaIOaGaamiwaiaaiMcaaaaabeaakiaaiYcacaaMc8Uaey4b Ie9aaSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaacaWGtbWaaW baaeqabaGaaGikaiaadIfacaaIPaaaaaqabaGccaaISaGaaGPaVlaa dsgacaWGwbWaaSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaaca WGtbWaaWbaaeqabaGaaGikaiaadIfacaaIPaaaaaqabaGccaaIPaGa aGilaaaa@7A8B@

в которой нас будет интересовать лишь метрика g E | S (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaBa aaleaacaWGfbaabeaakiaaiYhadaWgaaWcbaGaam4uamaaCaaabeqa aiaaiIcacaWGybGaaGykaaaaaeqaaaaa@3E67@ . Ее обратный образ обозначим через G (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4ramaaCa aaleqabaGaaGikaiaadIfacaaIPaaaaaaa@3B48@ , т. е.

                                                           G (X) :=( γ (X) ) g E | S (X) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4ramaaCa aaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGOoaiaai2dacaaIOaGa eq4SdC2aaWbaaSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaIPaWaaW baaSqabeaacqGHxiIkaaGccaqINbWaaSbaaSqaaiaadweaaeqaaOGa aGiFamaaBaaaleaacaWGtbWaaWbaaeqabaGaaGikaiaadIfacaaIPa aaaaqabaGccaaIUaaaaa@4AAA@

В явном виде

                                                 G (X) | Y (u,v)= g E | γ (X) (Y) ( T Y γ (X) (u), T Y γ (X) (v)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4ramaaCa aaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGiFamaaBaaaleaacaWG zbaabeaakiaaiIcacaqI1bGaaGilaiaaykW7caqI2bGaaGykaiaai2 dacaqINbWaaSbaaSqaaiaadweaaeqaaOGaaGiFamaaBaaaleaacqaH ZoWzdaahaaqabeaacaaIOaGaamiwaiaaiMcaaaGaaGikaiaadMfaca aIPaaabeaakiaaiIcacaWGubWaaSbaaSqaaiaadMfaaeqaaOGaeq4S dC2aaWbaaSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaIOaGaaKyDai aaiMcacaaISaGaaGPaVlaadsfadaWgaaWcbaGaamywaaqabaGccqaH ZoWzdaahaaWcbeqaaiaaiIcacaWGybGaaGykaaaakiaaiIcacaqI2b GaaGykaiaaiMcacaaISaaaaa@6297@

где Y S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF sa=udaWgaaWcbaGaamOuaaqabaaaaa@4807@ , а u,v T Y S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiY cacaaMc8UaaKODaiabgIGiolaadsfadaWgaaWcbaGaamywaaqabaWe fv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaOGae8NeWp 1aaSbaaSqaaiaadkfaaeqaaaaa@4D58@ . Синтезируем теперь по семейству { G (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaajE eadaahaaWcbeqaaiaaiIcacaWGybGaaGykaaaakiaai2hadaWgaaWc baGaamiwaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHT gD1jhaiuaacqWFsa=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D7E@  новое поле

                                                              G:X G (X) | X , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raiaaiQ dacaaMc8UaamiwaiablAAiHjaajEeadaahaaWcbeqaaiaaiIcacaWG ybGaaGykaaaakiaaiYhadaWgaaWcbaGaamiwaaqabaGccaaISaaaaa@43D8@

т. е.

                                                  G | X (u,v)= g E | γ (X) (X) ( T X γ (X) (u), T X γ (X) (v)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raiaaiY hadaWgaaWcbaGaamiwaaqabaGccaaIOaGaaKyDaiaaiYcacaaMc8Ua aKODaiaaiMcacaaI9aGaaK4zamaaBaaaleaacaWGfbaabeaakiaaiY hadaWgaaWcbaGaeq4SdC2aaWbaaeqabaGaaGikaiaadIfacaaIPaaa aiaaiIcacaWGybGaaGykaaqabaGccaaIOaGaamivamaaBaaaleaaca WGybaabeaakiabeo7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaa aOGaaGikaiaajwhacaaIPaGaaGilaiaaykW7caWGubWaaSbaaSqaai aadIfaaeqaaOGaeq4SdC2aaWbaaSqabeaacaaIOaGaamiwaiaaiMca aaGccaaIOaGaaKODaiaaiMcacaaIPaaaaa@5F64@

для u,v T X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiY cacaaMc8UaaKODaiabgIGiolaadsfadaWgaaWcbaGaamiwaaqabaWe fv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaOGae8NeWp 1aaSbaaSqaaiaadkfaaeqaaaaa@4D57@ . Но последнее равенство можно записать в терминах локальных деформаций и скалярного произведения () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgw SixlaaiMcaaaa@3BB6@ :

                                                          G | X (u,v)= H X [u] H X [v]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raiaaiY hadaWgaaWcbaGaamiwaaqabaGccaaIOaGaaKyDaiaaiYcacaaMc8Ua aKODaiaaiMcacaaI9aGaaKisamaaBaaaleaacaWGybaabeaakiaaiU facaqI1bGaaGyxaiaajIeadaWgaaWcbaGaamiwaaqabaGccaaIBbGa aKODaiaai2facaaIUaaaaa@4B7D@                                                               (13)

 Приходим к финальному выражению для метрики. Физический смысл определения (13) состоит в том, что в каждой точке X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF sa=udaWgaaWcbaGaamOuaaqabaaaaa@4806@  метрика G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raaaa@38D9@  возвращает длины и углы материальных волокон, находящихся в натуральном состоянии.

Синтезировав метрику (13), мы теперь можем синтезировать связность Леви-Чивита LeviCivita1916. Ее коэффициенты в координатном репере ( A ) A=1 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgk Gi2oaaBaaaleaacaWGbbaabeaakiaaiMcadaqhaaWcbaGaamyqaiaa i2dacaaIXaaabaGaaG4maaaaaaa@3F00@  представлены выражениями:

                                                     Γ A C B = G CD 2 G DB X A + G AD X B G AB X D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aa0 baaSqaaiaadgeaaeaacaWGdbaaaOWaaSbaaSqaaiaadkeaaeqaaOGa aGypamaalaaabaGaam4ramaaCaaaleqabaGaam4qaiaadseaaaaake aacaaIYaaaamaabmaabaWaaSaaaeaacqGHciITcaWGhbWaaSbaaSqa aiaadseacaWGcbaabeaaaOqaaiabgkGi2kaadIfadaahaaWcbeqaai aadgeaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGhbWaaSbaaSqa aiaadgeacaWGebaabeaaaOqaaiabgkGi2kaadIfadaahaaWcbeqaai aadkeaaaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaWGhbWaaSbaaSqa aiaadgeacaWGcbaabeaaaOqaaiabgkGi2kaadIfadaahaaWcbeqaai aadseaaaaaaaGccaGLOaGaayzkaaGaaGilaaaa@5A3E@                                                          (14)

 где [ G AB ]=[ G AB ] 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadE eadaahaaWcbeqaaiaadgeacaWGcbaaaOGaaGyxaiaai2dacaaIBbGa am4ramaaBaaaleaacaWGbbGaamOqaaqabaGccaaIDbWaaWbaaSqabe aacqGHsislcaaIXaaaaaaa@435A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  матрица, обратная к матрице метрических коэффициентов G AB = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGbbGaamOqaaqabaGccaaI9aaaaa@3B5D@   =G( A , B ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaajE eacaaIOaGaeyOaIy7aaSbaaSqaaiaadgeaaeqaaOGaaGilaiaaykW7 cqGHciITdaWgaaWcbaGaamOqaaqabaGccaaIPaaaaa@420B@ . Таким образом, неевклидова отсчетная форма (12) полностью синтезирована. Она является римановым пространством, геометрия которого характеризуется тензором кривизны Римана MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xrisbaa@43DC@ . Его компоненты в координатном репере связаны с коэффициентами связности формулой

                                                   A D B C = Γ B D C X A Γ A D C X B + Γ B E C Γ A D E Γ A E C Γ B D E . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=XrisnaaDaaaleaa caWGbbaabaGaamiraaaakmaaBaaaleaacaWGcbaabeaakmaaBaaale aacaWGdbaabeaakiaai2dadaWcaaqaaiabgkGi2kabfo5ahnaaDaaa leaacaWGcbaabaGaamiraaaakmaaBaaaleaacaWGdbaabeaaaOqaai abgkGi2kaadIfadaahaaWcbeqaaiaadgeaaaaaaOGaeyOeI0YaaSaa aeaacqGHciITcqqHtoWrdaqhaaWcbaGaamyqaaqaaiaadseaaaGcda WgaaWcbaGaam4qaaqabaaakeaacqGHciITcaWGybWaaWbaaSqabeaa caWGcbaaaaaakiabgUcaRiabfo5ahnaaDaaaleaacaWGcbaabaGaam yraaaakmaaBaaaleaacaWGdbaabeaakiabfo5ahnaaDaaaleaacaWG bbaabaGaamiraaaakmaaBaaaleaacaWGfbaabeaakiabgkHiTiabfo 5ahnaaDaaaleaacaWGbbaabaGaamyraaaakmaaBaaaleaacaWGdbaa beaakiabfo5ahnaaDaaaleaacaWGcbaabaGaamiraaaakmaaBaaale aacaWGfbaabeaakiaai6caaaa@6E56@                                                       (15)

 Тензорное поле MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xrisbaa@43DC@ , в свою очередь, определяет тензор кривизны Риччи Ric MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM gacaqGJbaaaa@3AAE@ , компоненты которого в координатном репере получаются при помощи свертки компонент кривизны Римана:

                                                              Ric AB = A C C B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM gacaqGJbWaaSbaaSqaaiaadgeacaWGcbaabeaakiaai2datuuDJXwA KzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hhHi1aa0baaS qaaiaadgeaaeaacaWGdbaaaOWaaSbaaSqaaiaadoeaaeqaaOWaaSba aSqaaiaadkeaaeqaaOGaaGOlaaaa@4D85@

Являясь тензорным полем второго ранга, тензор Ric MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM gacaqGJbaaaa@3AAE@  имеет в качестве одного из главных инвариантов след

 

                                                              Scal= G AB Ric AB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4uaiaabo gacaqGHbGaaeiBaiaai2dacaWGhbWaaWbaaSqabeaacaWGbbGaamOq aaaakiaabkfacaqGPbGaae4yamaaBaaaleaacaWGbbGaamOqaaqaba aaaa@434D@                                                                  (16)

  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  скалярную кривизну.

Подведем итог рассуждениям. Если локальные деформации несовместны, то имеются две возможности. В рамках первой из них мы по-прежнему работаем с формами как с областями, наделенными геометрией евклидова пространства. Но тогда приходится отказаться от идеи глобальной натуральной формы, заменив ее семейством локально натуральных форм. В этой связи соотношения механики сплошной среды теряют свой привычный вид. Однако имеется и вторая возможность, когда требование к геометрии форм ослабляется. Допускается, что форма может быть многообразием неевклидовой связности, инварианты которой характеризуют несовместность деформаций. В таком случае идея глобальной натуральной формы сохраняется и деформацию тела можно по-прежнему рассматривать как отображение одной формы в другую Goodbrake2021. Однако теперь первая форма является неевклидовым пространством, в то время как вторая, актуальная форма, по-прежнему наделена евклидовой геометрией объемлющего пространства.

2 Кинематика пластин

2.1 Допустимые конфигурации и формы

 Следуя методологии, предложенной в разделе 1.1, уточним, что понимается под основным объектом настоящего исследования MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  пластиной. С интуитивной точки зрения пластина рассматривается как трехмерное тело, одно из измерений которого мало по сравнению с двумя другими. Вместе с тем попытка формализации такого представления наталкивается на следующую трудность: формы одного тела гомеоморфны, а гомеоморфизм нечувствителен к размерам. Образно говоря, если некоторая форма тела подходит под интуитивное описание пластины, то результат ее деформации может привести к форме, равнопротяженной по всем направлениям. Для того чтобы исправить ситуацию, следует ограничить класс возможных форм. Это может быть сделано следующим образом.

Назовем допустимой конфигурацию ϰ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+aaa@4404@ , если ее образ SE MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=ucqGHckcZcqWF Wesraaa@4683@  является ограниченным множеством и удовлетворяет условию: для любой точки формы S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  найдется шар с центром в этой точке, который а) полностью лежит в S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  и б) радиус этого шара намного меньше минимального радиуса шара, описанного вокруг формы S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ . Таким образом, отношение максимального радиуса шара, вписанного в форму, к минимальному радиусу шара, описанного вокруг формы, должно быть намного меньше 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@ . Далее под тонкостенной конструкцией будем подразумевать пару (B,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqcaaI SaGaaGPaVlab=1sidjaaiMcaaaa@493C@ , где B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cbaa@4480@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  материальное многообразие, а MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=1sidbaa@43DE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  множество всех допустимых конфигураций. Зафиксируем некоторую допустимую конфигурацию ϰ R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+daWgaaWcbaGa amOuaaqabaGccqGHiiIZtuuDJXwAKzKCHTgD1jharCqr1ngBPrgigj xyRrxDYbacgaGae4xlHmeaaa@526D@ ; ее образ S R = ϰ R (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaGccaaI9aacfiGae4h8dK=aaSbaaSqaaiaadkfaaeqaaO GaaGikamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaa cqqFbaVqcaaIPaaaaa@56AA@  рассматривается в качестве отсчетной формы. Тогда приходим к тонкостенной конструкции с выбранной отсчетной формой (B,, ϰ R ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqcaaI SaGaaGPaVlab=1sidjaaiYcacaaMc8+efv3ySLgznfgDOfdarCqr1n gBPrginfgDObYtUvgaiyGacqGFWpq+daWgaaWcbaGaamOuaaqabaGc caaIPaaaaa@5888@ .

Поясним теперь, что в настоящей работе понимается под пластиной. Предположим, что граница S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@44D2@  может быть разложена на две части:

                                                              S R = Π 1 Π 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7efv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWg aaWcbaGaamOuaaqabaGccaaI9aGaeuiOda1aaSbaaSqaaiaaigdaae qaaOGaeyOkIGSaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaaGilaaaa @4DDB@

 так, что выполнены следующие условия:

 1. Существует поверхность ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  такая, что для каждой точки A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@38CD@  на Π 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaaikdaaeqaaaaa@3A6D@  существует шар, содержащий эту точку, с центром, лежащим на ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@ ;

 2. Радиус этого шара r A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGbbaabeaaaaa@39F0@  намного меньше радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  сферы, описанной вокруг всей формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ .

 В общем случае мы приходим к формализации оболочки, которая, таким образом, представима в виде структуры (B,, ϰ R , ω R ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFbaVqcaaI SaGaaGPaVlab=1sidjaaiYcacaaMc8+efv3ySLgznfgDOfdarCqr1n gBPrginfgDObYtUvgaiyGacqGFWpq+daWgaaWcbaGaamOuaaqabaGc caaISaGaaGPaVlabeM8a3naaBaaaleaacaWGsbaabeaakiaaiMcaaa a@5DA3@ . Предположим дополнительно, что ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  есть плоскость. Тогда структура, определенная выше, есть формализация пластины. Именно этот случай и рассматривается в настоящей работе.

Будем называть ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  плоскостью редукции, объединение частей Π 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaaikdaaeqaaaaa@3A6D@  лицевыми поверхностями, а объединение частей Π 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaaigdaaeqaaaaa@3A6C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  боковыми поверхностями. Пересечение плоскости редукции и боковых поверхностей, т. е. Γ= ω R Π 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaaG ypaiabeM8a3naaBaaaleaacaWGsbaabeaakiabgMIihlabfc6aqnaa BaaaleaacaaIXaaabeaaaaa@4113@ , определяет контур пластины. Отметим, что плоскость редукции служит плоскостью осреднения и в общем случае может целиком или частично лежать вне формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  (пластина с волнообразным профилем может служить примером). Деформация пластины определяется как тот из возможных гомеоморфизмов γ: S R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jr8tnaaBaaaleaacaWGsbaabeaakiabgkziUkab=jr8tbaa@4C37@ , образ которого S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  является допустимой формой, удовлетворяющей условиям типа 1 и 2 выше. 

2.2 Координатные представления полей

Для получения координатных представлений выберем в физическом пространстве E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  правую прямоугольную (декартову) систему координат O, i,j,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGpbGaaGilaiaaykW7daqadaqaaiaajMgacaaISaGaaGPaVlaajQga caaISaGaaGPaVlaajUgaaiaawIcacaGLPaaaaiaawUhacaGL9baaaa a@4637@  так, что начало отсчета принадлежит плоскости редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ , а первые два вектора i,j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyAaiaaiY cacaaMc8UaaKOAaaaa@3C31@  параллельны ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ . Это означает, что любая точка X ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI GiolabeM8a3naaBaaaleaacaWGsbaabeaaaaa@3D38@  может быть записана как

                                                   OX = x 1 i+ x 2 jилиX=O+ x 1 i+ x 2 j. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGpbGaamiwaaGaay51GaGaaGypaiaadIhadaahaaWcbeqaaiaaigda aaGccaqIPbGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaaaakiaajQ gacaaMf8UaaeioeiaabUdbcaqG4qGaaGzbVlaadIfacaaI9aGaam4t aiabgUcaRiaadIhadaahaaWcbeqaaiaaigdaaaGccaqIPbGaey4kaS IaamiEamaaCaaaleqabaGaaGOmaaaakiaajQgacaaIUaaaaa@52F4@

Наряду с декартовыми используются и криволинейные координаты ρ 1 , ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCdaahaaWcbeqaaiaaigdaaaGccaaISaGaaGPaVlabeg8aYnaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@4136@ , которые задаются по крайней мере на части ω 0 ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaOGaeyOGIWSaeqyYdC3aaSbaaSqaaiaadkfa aeqaaaaa@3F90@ :

                                                  X ω 0 :X=O+ x 1 ( ρ 1 , ρ 2 )i+ x 2 ( ρ 1 , ρ 2 )j, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iwaiabgIGiolabeM8a3naaBaaaleaacaaIWaaabeaakiaaiQdacaaM e8Uaamiwaiaai2dacaWGpbGaey4kaSIaamiEamaaCaaaleqabaGaaG ymaaaakiaaiIcacqaHbpGCdaahaaWcbeqaaiaaigdaaaGccaaISaGa aGPaVlabeg8aYnaaCaaaleqabaGaaGOmaaaakiaaiMcacaqIPbGaey 4kaSIaamiEamaaCaaaleqabaGaaGOmaaaakiaaiIcacqaHbpGCdaah aaWcbeqaaiaaigdaaaGccaaISaGaaGPaVlabeg8aYnaaCaaaleqaba GaaGOmaaaakiaaiMcacaqIQbGaaGilaaaa@5D16@

где ( ρ 1 , ρ 2 ) D 0 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeg 8aYnaaCaaaleqabaGaaGymaaaakiaaiYcacaaMc8UaeqyWdi3aaWba aSqabeaacaaIYaaaaOGaaGykaiabgIGiolaadseadaWgaaWcbaGaaG imaaqabaGccqGHckcZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@51EC@ .

Предполагается, что на D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIWaaabeaaaaa@39B6@  справедливо неравенство

                                                              det x α ρ β >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bWaamWaaeaadaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqa aiabeg7aHbaaaOqaaiabgkGi2kabeg8aYnaaCaaaleqabaGaeqOSdi gaaaaaaOGaay5waiaaw2faaiaai6dacaaIWaGaaGilaaaa@4843@

означающее обратимость формул перехода от одних координат к другим.

Для простоты предположим, что контур Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  полностью лежит в ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaaaa@3ABA@ , а связные подмножества Π 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiOda1aaS baaSqaaiaaikdaaeqaaaaa@3A6D@  являются поверхностями без самопересечений. Следовательно, форма S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , как область в E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ , может быть определена в координатной форме следующим расширением карты ρ 1 , ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCdaahaaWcbeqaaiaaigdaaaGccaaISaGaaGPaVlabeg8aYnaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@4136@  на окрестность ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaaaa@3ABA@ :

                                     S R = XE:X=O+ x 1 ( ρ 1 , ρ 2 )i+ x 2 ( ρ 1 , ρ 2 )j+zk,( ρ 1 , ρ 2 ,z)D 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaGccaaI9aWaaiWaaeaacaWGybGaeyicI4Sae8hmHuKaaG OoaiaaysW7caWGybGaaGypaiaad+eacqGHRaWkcaWG4bWaaWbaaSqa beaacaaIXaaaaOGaaGikaiabeg8aYnaaCaaaleqabaGaaGymaaaaki aaiYcacaaMc8UaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaaGykaiaa jMgacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiabeg 8aYnaaCaaaleqabaGaaGymaaaakiaaiYcacaaMc8UaeqyWdi3aaWba aSqabeaacaaIYaaaaOGaaGykaiaajQgacqGHRaWkcaWG6bGaaK4Aai aaiYcacaaMf8UaaGikaiabeg8aYnaaCaaaleqabaGaaGymaaaakiaa iYcacaaMc8UaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaaGilaiaayk W7caWG6bGaaGykaiabgIGiolaadseacqGHckcZtuuDJXwAK1uy0HMm aeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risnaaCaaaleqabaGaaG 4maaaaaOGaay5Eaiaaw2haaiaai6caaaa@8B6C@                                         (17)

 Здесь символы x 1 x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaaaakiabggMi6kaadIhaaaa@3CBC@ , x 2 y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiabggMi6kaadMhaaaa@3CBE@ , x 3 z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaakiabggMi6kaadQhaaaa@3CC0@  обозначают декартовы координаты, связанные с выбранной системой координат в E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ .

В области ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaaaa@3ABA@ , которая является открытым подмножеством плоскости редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  (т. е. подпространства E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ , натянутого на i,j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qIPbGaaGilaiaaykW7caqIQbaacaGLOaGaayzkaaaaaa@3DBA@  ), можно определить поле локальных (в общем случае косоугольных) базисов e α α=1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaSbaaSqaaiabeg7aHbqabaaakiaawIcacaGLPaaadaqhaaWc baGaeqySdeMaaGypaiaaigdaaeaacaaIYaaaaaaa@405F@  как

                                                     e α = r ρ α = x ρ α i+ y ρ α j,α=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzamaaBa aaleaacqaHXoqyaeqaaOGaaGypamaalaaabaGaeyOaIyRaaKOCaaqa aiabgkGi2kabeg8aYnaaCaaaleqabaGaeqySdegaaaaakiaai2dada WcaaqaaiabgkGi2kaadIhaaeaacqGHciITcqaHbpGCdaahaaWcbeqa aiabeg7aHbaaaaGccaqIPbGaey4kaSYaaSaaaeaacqGHciITcaWG5b aabaGaeyOaIyRaeqyWdi3aaWbaaSqabeaacqaHXoqyaaaaaOGaaKOA aiaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGaaGPaVlaaik dacaaIUaaaaa@5E8D@                                                          (18)

 Дальнейшие рассуждения наталкиваются на следующую трудность: явные выражения для компонент полей, записанные относительно криволинейных координат, оказываются громоздкими. Для упрощения записи будем использовать следующие обозначения:

             a= x ,ρ 2 + y ,ρ 2 ,b= x ,ρ x ,θ + y ,ρ y ,θ ,c= x ,θ 2 + y ,θ 2 ,ω= x ,ρ y ,θ y ,ρ x ,θ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dacaWG4bWaa0baaSqaaiaaiYcacqaHbpGCaeaacaaIYaaaaOGaey4k aSIaamyEamaaDaaaleaacaaISaGaeqyWdihabaGaaGOmaaaakiaaiY cacaaMf8UaamOyaiaai2dacaWG4bWaaSbaaSqaaiaaiYcacqaHbpGC aeqaaOGaamiEamaaBaaaleaacaaISaGaeqiUdehabeaakiabgUcaRi aadMhadaWgaaWcbaGaaGilaiabeg8aYbqabaGccaWG5bWaaSbaaSqa aiaaiYcacqaH4oqCaeqaaOGaaGilaiaaywW7caWGJbGaaGypaiaadI hadaqhaaWcbaGaaGilaiabeI7aXbqaaiaaikdaaaGccqGHRaWkcaWG 5bWaa0baaSqaaiaaiYcacqaH4oqCaeaacaaIYaaaaOGaaGilaiaayw W7cqaHjpWDcaaI9aGaamiEamaaBaaaleaacaaISaGaeqyWdihabeaa kiaadMhadaWgaaWcbaGaaGilaiabeI7aXbqabaGccqGHsislcaWG5b WaaSbaaSqaaiaaiYcacqaHbpGCaeqaaOGaamiEamaaBaaaleaacaaI SaGaeqiUdehabeaakiaaiYcaaaa@7964@

             d= x ,ρρ y ,θ y ,ρρ x ,θ ,e= x ,ρθ y ,θ y ,ρθ x ,θ ,f= x ,θθ y ,θ x ,θ y ,θθ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaai2 dacaWG4bWaaSbaaSqaaiaaiYcacqaHbpGCcqaHbpGCaeqaaOGaamyE amaaBaaaleaacaaISaGaeqiUdehabeaakiabgkHiTiaadMhadaWgaa WcbaGaaGilaiabeg8aYjabeg8aYbqabaGccaWG4bWaaSbaaSqaaiaa iYcacqaH4oqCaeqaaOGaaGilaiaaywW7caWGLbGaaGypaiaadIhada WgaaWcbaGaaGilaiabeg8aYjabeI7aXbqabaGccaWG5bWaaSbaaSqa aiaaiYcacqaH4oqCaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaISa GaeqyWdiNaeqiUdehabeaakiaadIhadaWgaaWcbaGaaGilaiabeI7a XbqabaGccaaISaGaaGzbVlaadAgacaaI9aGaamiEamaaBaaaleaaca aISaGaeqiUdeNaeqiUdehabeaakiaadMhadaWgaaWcbaGaaGilaiab eI7aXbqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaiYcacqaH4oqCae qaaOGaamyEamaaBaaaleaacaaISaGaeqiUdeNaeqiUdehabeaakiaa iYcaaaa@7B19@

             g= x ,ρ y ,ρρ y ,ρ x ,ρρ ,h= x ,ρ y ,ρθ y ,ρ x ,ρθ ,j= x ,ρ y ,θθ y ,ρ x ,θθ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaai2 dacaWG4bWaaSbaaSqaaiaaiYcacqaHbpGCaeqaaOGaamyEamaaBaaa leaacaaISaGaeqyWdiNaeqyWdihabeaakiabgkHiTiaadMhadaWgaa WcbaGaaGilaiabeg8aYbqabaGccaWG4bWaaSbaaSqaaiaaiYcacqaH bpGCcqaHbpGCaeqaaOGaaGilaiaaywW7caWGObGaaGypaiaadIhada WgaaWcbaGaaGilaiabeg8aYbqabaGccaWG5bWaaSbaaSqaaiaaiYca cqaHbpGCcqaH4oqCaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaISa GaeqyWdihabeaakiaadIhadaWgaaWcbaGaaGilaiabeg8aYjabeI7a XbqabaGccaaISaGaaGzbVlaadQgacaaI9aGaamiEamaaBaaaleaaca aISaGaeqyWdihabeaakiaadMhadaWgaaWcbaGaaGilaiabeI7aXjab eI7aXbqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaiYcacqaHbpGCae qaaOGaamiEamaaBaaaleaacaaISaGaeqiUdeNaeqiUdehabeaakiaa i6caaaa@7B61@

 Здесь ρ= ρ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabeg8aYnaaCaaaleqabaGaaGymaaaaaaa@3D36@ , θ= ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ypaiabeg8aYnaaCaaaleqabaGaaGOmaaaaaaa@3D2D@ , ζ=z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaaG ypaiaadQhaaaa@3B8A@ , а запятая означает взятие частной производной по соответствующему аргументу. В рамках новых обозначений формулы (18) принимают вид

                                                       e ρ = x ,ρ i+ y ,ρ j, e θ = x ,θ i y ,θ j. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzamaaBa aaleaacqaHbpGCaeqaaOGaaGypaiaadIhadaWgaaWcbaGaaGilaiab eg8aYbqabaGccaqIPbGaey4kaSIaamyEamaaBaaaleaacaaISaGaeq yWdihabeaakiaajQgacaaISaGaaGzbVlaajwgadaWgaaWcbaGaeqiU dehabeaakiaai2dacaWG4bWaaSbaaSqaaiaaiYcacqaH4oqCaeqaaO GaaKyAaiabgkHiTiaadMhadaWgaaWcbaGaaGilaiabeI7aXbqabaGc caqIQbGaaGOlaaaa@5686@

Поле взаимных базисов e α α=1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaWbaaSqabeaacqaHXoqyaaaakiaawIcacaGLPaaadaqhaaWc baGaeqySdeMaaGypaiaaigdaaeaacaaIYaaaaaaa@4060@ , в свою очередь, определяется из решения системы линейных неоднородных уравнений e α e β = δ β α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzamaaCa aaleqabaGaeqySdegaaOGaaGzaVlabgwSixlaaygW7caqILbWaaSba aSqaaiabek7aIbqabaGccaaI9aGaeqiTdq2aa0baaSqaaiabek7aIb qaaiabeg7aHbaaaaa@48CB@ , α,β=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ilaiaaykW7cqaHYoGycaaI9aGaaGymaiaaiYcacaaMc8UaaGOmaaaa @4207@ . В явном виде

                                                    e ρ = y ,θ ω i+ x ,θ ω j, e θ = y ,ρ ω i x ,ρ ω j. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyzamaaCa aaleqabaGaeqyWdihaaOGaaGypaiabgkHiTmaalaaabaGaamyEamaa BaaaleaacaaISaGaeqiUdehabeaaaOqaaiabeM8a3baacaqIPbGaey 4kaSYaaSaaaeaacaWG4bWaaSbaaSqaaiaaiYcacqaH4oqCaeqaaaGc baGaeqyYdChaaiaajQgacaaISaGaaGzbVlaajwgadaahaaWcbeqaai abeI7aXbaakiaai2dadaWcaaqaaiaadMhadaWgaaWcbaGaaGilaiab eg8aYbqabaaakeaacqaHjpWDaaGaaKyAaiabgkHiTmaalaaabaGaam iEamaaBaaaleaacaaISaGaeqyWdihabeaaaOqaaiabeM8a3baacaqI QbGaaGOlaaaa@5EE9@

Поле базисов e α α=1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaSbaaSqaaiabeg7aHbqabaaakiaawIcacaGLPaaadaqhaaWc baGaeqySdeMaaGypaiaaigdaaeaacaaIYaaaaaaa@405F@  и соответствующее ему поле e α α=1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaWbaaSqabeaacqaHXoqyaaaakiaawIcacaGLPaaadaqhaaWc baGaeqySdeMaaGypaiaaigdaaeaacaaIYaaaaaaa@4060@  дуальных базисов можно расширить на все пространство V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@ , присоединив к ним третий вектор k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4Aaaaa@38FD@ . Это приводит к полям базисов e ρ , e θ , e ζ = e 1 , e 2 ,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaSbaaSqaaiabeg8aYbqabaGccaaISaGaaGPaVlaajwgadaWg aaWcbaGaeqiUdehabeaakiaaiYcacaaMc8UaaKyzamaaBaaaleaacq aH2oGEaeqaaaGccaGLOaGaayzkaaGaaGypamaabmaabaGaaKyzamaa BaaaleaacaaIXaaabeaakiaaiYcacaaMc8UaaKyzamaaBaaaleaaca aIYaaabeaakiaaiYcacaaMc8UaaK4AaaGaayjkaiaawMcaaaaa@5242@  и e ρ , e θ , e ζ = e 1 , e 2 ,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaWbaaSqabeaacqaHbpGCaaGccaaISaGaaGPaVlaajwgadaah aaWcbeqaaiabeI7aXbaakiaaiYcacaaMc8UaaKyzamaaCaaaleqaba GaeqOTdOhaaaGccaGLOaGaayzkaaGaaGypamaabmaabaGaaKyzamaa CaaaleqabaGaaGymaaaakiaaiYcacaaMc8UaaKyzamaaCaaaleqaba GaaGOmaaaakiaaiYcacaaMc8UaaK4AaaGaayjkaiaawMcaaaaa@5247@ .

Исходным и расширенным полям базисов соответствуют плоские и пространственные операторы Гамильтона в ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaaaa@3ABA@  и S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ . Они имеют следующие представления:

             ω :=i x +j y = e 1 ρ 1 + e 2 ρ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiabeM8a3bqabaGccaaI6aGaaGypaiaajMgadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadIhaaaGaey4kaSIaaKOAamaalaaabaGaey OaIylabaGaeyOaIyRaamyEaaaacaaI9aGaaKyzamaaCaaaleqabaGa aGymaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaeqyWdi3aaWbaaS qabeaacaaIXaaaaaaakiabgUcaRiaajwgadaahaaWcbeqaaiaaikda aaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kabeg8aYnaaCaaaleqaba GaaGOmaaaaaaGccaaISaaaaa@58DA@

             :=i x +j y +k z = e 1 ρ 1 + e 2 ρ 2 +k z = ω +k z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaG Ooaiaai2dacaqIPbWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baa aiabgUcaRiaajQgadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadMhaaa Gaey4kaSIaaK4AamaalaaabaGaeyOaIylabaGaeyOaIyRaamOEaaaa caaI9aGaaKyzamaaCaaaleqabaGaaGymaaaakmaalaaabaGaeyOaIy labaGaeyOaIyRaeqyWdi3aaWbaaSqabeaacaaIXaaaaaaakiabgUca RiaajwgadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabgkGi2cqaai abgkGi2kabeg8aYnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaqI RbWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaiaai2dacqGHhi s0daWgaaWcbaGaeqyYdChabeaakiabgUcaRiaajUgadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadQhaaaGaaGOlaaaa@6C42@

 Отметим, что здесь и далее мы, следуя Truesdell2004, определяем оператор градиента как транспонирование формального диадного произведения соответствующего оператора Гамильтона и поля u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ , т. е.

                                                            gradu:= u T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4zaiaadk hacaWGHbGaamizaiaayIW7caqI1bGaaGOoaiaai2dadaqadaqaaiab gEGirlabgEPielaajwhaaiaawIcacaGLPaaadaahaaWcbeqaaiaabs faaaGccaaIUaaaaa@47B1@

Для краткости обозначим gradu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4zaiaadk hacaWGHbGaamizaiaayIW7caqI1baaaa@3E48@  как u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaaaa@3A8D@  (без знака диадного произведения). Итак, u= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaiaai2daaaa@3B54@   = u T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaGaey4bIeTaey4LIqSaaKyDaaGaayjkaiaawMcaamaaCaaaleqa baGaaeivaaaaaaa@3FEA@ , и, следовательно, если u= u α e α +wk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dacaWG1bWaaWbaaSqabeaacqaHXoqyaaGccaqILbWaaSbaaSqaaiab eg7aHbqabaGccqGHRaWkcaWG3bGaaGjcVlaajUgaaaa@43C8@  является векторным полем, то:

             ω u= e α ρ α u β e β +wk T = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiabeM8a3bqabaGccaqI1bGaaGypamaabmaabaGaaKyzamaa CaaaleqabaGaeqySdegaaOWaaSaaaeaacqGHciITaeaacqGHciITcq aHbpGCdaahaaWcbeqaaiabeg7aHbaaaaGccqGHxkcXdaqadaqaaiaa dwhadaahaaWcbeqaaiabek7aIbaakiaajwgadaWgaaWcbaGaeqOSdi gabeaakiabgUcaRiaadEhacaaMi8UaaK4AaaGaayjkaiaawMcaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaeivaaaakiaai2daaaa@577D@

             = u β ρ α + u γ Γ γα β e β e α + w ρ α k e α , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaWaaSaaaeaacqGHciITcaWG1bWaaWbaaSqabeaacqaHYoGyaaaa keaacqGHciITcqaHbpGCdaahaaWcbeqaaiabeg7aHbaaaaGccqGHRa WkcaWG1bWaaWbaaSqabeaacqaHZoWzaaGccqqHtoWrdaqhaaWcbaGa eq4SdCMaeqySdegabaGaeqOSdigaaaGccaGLOaGaayzkaaGaaKyzam aaBaaaleaacqaHYoGyaeqaaOGaey4LIqSaaKyzamaaCaaaleqabaGa eqySdegaaOGaey4kaSYaaSaaaeaacqGHciITcaWG3baabaGaeyOaIy RaeqyWdi3aaWbaaSqabeaacqaHXoqyaaaaaOGaaK4AaiabgEPielaa jwgadaahaaWcbeqaaiabeg7aHbaakiaaiYcaaaa@643C@

             u= e α ρ α +k z u β e β +wk T = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaiaai2dadaqadaqaamaabmaabaGaaKyzamaaCaaaleqabaGaeqyS degaaOWaaSaaaeaacqGHciITaeaacqGHciITcqaHbpGCdaahaaWcbe qaaiabeg7aHbaaaaGccqGHRaWkcaqIRbWaaSaaaeaacqGHciITaeaa cqGHciITcaWG6baaaaGaayjkaiaawMcaaiabgEPiepaabmaabaGaam yDamaaCaaaleqabaGaeqOSdigaaOGaaKyzamaaBaaaleaacqaHYoGy aeqaaOGaey4kaSIaam4DaiaayIW7caqIRbaacaGLOaGaayzkaaaaca GLOaGaayzkaaWaaWbaaSqabeaacaqGubaaaOGaaGypaaaa@5CB6@

             = ω u+ u β z e β k+ w z kk, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgE GirpaaBaaaleaacqaHjpWDaeqaaOGaaKyDaiabgUcaRmaalaaabaGa eyOaIyRaamyDamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRaam OEaaaacaqILbWaaSbaaSqaaiabek7aIbqabaGccqGHxkcXcaqIRbGa ey4kaSYaaSaaaeaacqGHciITcaWG3baabaGaeyOaIyRaamOEaaaaca qIRbGaey4LIqSaaK4AaiaaiYcaaaa@5510@

 где функции

                                                   Γ γα β = e β e γ ρ α = ρ β x 2 x ρ γ ρ α + ρ β y 2 y ρ γ ρ α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aa0 baaSqaaiabeo7aNjabeg7aHbqaaiabek7aIbaakiaai2dacaqILbWa aWbaaSqabeaacqaHYoGyaaGccaaMb8UaeyyXICTaaGzaVpaalaaaba GaeyOaIyRaaKyzamaaBaaaleaacqaHZoWzaeqaaaGcbaGaeyOaIyRa eqyWdi3aaWbaaSqabeaacqaHXoqyaaaaaOGaaGypamaalaaabaGaey OaIyRaeqyWdi3aaWbaaSqabeaacqaHYoGyaaaakeaacqGHciITcaWG 4baaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamiEaa qaaiabgkGi2kabeg8aYnaaCaaaleqabaGaeq4SdCgaaOGaeqyWdi3a aWbaaSqabeaacqaHXoqyaaaaaOGaey4kaSYaaSaaaeaacqGHciITcq aHbpGCdaahaaWcbeqaaiabek7aIbaaaOqaaiabgkGi2kaadMhaaaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaey OaIyRaeqyWdi3aaWbaaSqabeaacqaHZoWzaaGccqaHbpGCdaahaaWc beqaaiabeg7aHbaaaaaaaa@793C@

являются символами Кристоффеля, связанными с криволинейными координатами на ω 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaaicdaaeqaaaaa@3ABA@ . В явном виде

                                                    Γ ρρ ρ = d ω , Γ ρρ θ = g ω , Γ θρ ρ = Γ ρθ ρ = e ω , Γ θρ θ = Γ ρθ θ = h ω , Γ θθ ρ = f ω , Γ θθ θ = j ω . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabfo5ahnaaDaaaleaacqaHbpGCcqaHbpGCaeaacqaHbpGCaaGc caaI9aWaaSaaaeaacaWGKbaabaGaeqyYdChaaiaaiYcacaaMf8Uaeu 4KdC0aa0baaSqaaiabeg8aYjabeg8aYbqaaiabeI7aXbaakiaai2da daWcaaqaaiaadEgaaeaacqaHjpWDaaGaaGilaiaaywW7cqqHtoWrda qhaaWcbaGaeqiUdeNaeqyWdihabaGaeqyWdihaaOGaaGypaiabfo5a hnaaDaaaleaacqaHbpGCcqaH4oqCaeaacqaHbpGCaaGccaaI9aWaaS aaaeaacaWGLbaabaGaeqyYdChaaiaaiYcaaeaacqqHtoWrdaqhaaWc baGaeqiUdeNaeqyWdihabaGaeqiUdehaaOGaaGypaiabfo5ahnaaDa aaleaacqaHbpGCcqaH4oqCaeaacqaH4oqCaaGccaaI9aWaaSaaaeaa caWGObaabaGaeqyYdChaaiaaiYcacaaMf8Uaeu4KdC0aa0baaSqaai abeI7aXjabeI7aXbqaaiabeg8aYbaakiaai2dadaWcaaqaaiaadAga aeaacqaHjpWDaaGaaGilaiaaywW7cqqHtoWrdaqhaaWcbaGaeqiUde NaeqiUdehabaGaeqiUdehaaOGaaGypamaalaaabaGaamOAaaqaaiab eM8a3baacaaIUaaaaaaa@8FFE@                                                         (19)

 

В последующих соотношениях будут использоваться компоненты метрического тензора g 0 = g αβ e α e β = g αβ e α e β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaBa aaleaacaaIWaaabeaakiaai2dacaWGNbWaaSbaaSqaaiabeg7aHjab ek7aIbqabaGccaqILbWaaWbaaSqabeaacqaHXoqyaaGccqGHxkcXca qILbWaaWbaaSqabeaacqaHYoGyaaGccaaI9aGaam4zamaaCaaaleqa baGaeqySdeMaeqOSdigaaOGaaKyzamaaBaaaleaacqaHXoqyaeqaaO Gaey4LIqSaaKyzamaaBaaaleaacqaHYoGyaeqaaaaa@535E@  на плоскости редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ . В рамках обозначений, введенных выше, они представлены выражениями:

                                                  g ρρ =a, g ρθ = g θρ =b, g θθ =c, g ρρ = b ω 2 , g ρθ = g θρ = c ω 2 , g θθ = a ω 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadEgadaWgaaWcbaGaeqyWdiNaeqyWdihabeaakiaai2dacaWG HbGaaGilaiaaywW7caWGNbWaaSbaaSqaaiabeg8aYjabeI7aXbqaba GccaaI9aGaam4zamaaBaaaleaacqaH4oqCcqaHbpGCaeqaaOGaaGyp aiaadkgacaaISaGaaGzbVlaadEgadaWgaaWcbaGaeqiUdeNaeqiUde habeaakiaai2dacaWGJbGaaGilaaqaaiaadEgadaahaaWcbeqaaiab eg8aYjabeg8aYbaakiaai2dadaWcaaqaaiaadkgaaeaacqaHjpWDda ahaaWcbeqaaiaaikdaaaaaaOGaaGilaiaaywW7caWGNbWaaWbaaSqa beaacqaHbpGCcqaH4oqCaaGccaaI9aGaam4zamaaCaaaleqabaGaeq iUdeNaeqyWdihaaOGaaGypaiabgkHiTmaalaaabaGaam4yaaqaaiab eM8a3naaCaaaleqabaGaaGOmaaaaaaGccaaISaGaaGzbVlaadEgada ahaaWcbeqaaiabeI7aXjabeI7aXbaakiaai2dadaWcaaqaaiaadgga aeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaOGaaGOlaaaaaaa@7C55@                                                       (20)

 Здесь [ g αβ ]=[ g αβ ] 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadE gadaahaaWcbeqaaiabeg7aHjabek7aIbaakiaai2facaaI9aGaaG4w aiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaai2fadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@4700@ . 

2.3 Деформации и кинематические гипотезы

 Деформация определяется как гомеоморфизм γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@ , который отображает допустимую отсчетную область S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  на допустимую искаженную область S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , т. е.

             γ: S R S, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jr8tnaaBaaaleaacaWGsbaabeaakiabgkziUkab=jr8tjaaiY caaaa@4CED@

             Xx=γ(X). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiablA AiHjaadIhacaaI9aGaeq4SdCMaaGikaiaadIfacaaIPaGaaGOlaaaa @4102@

 При этом с отсчетной областью ассоциирована плоскость редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ , которая может лежать как целиком внутри нее, так и выходить за ее пределы, хотя бы частично. Предположим вначале, что плоскость редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  содержится внутри S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ . Тогда отображение γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@  индуцирует деформацию γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaaaa@3A94@  плоскости редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  как ограничение γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@  на ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ :

             γ 0 : ω 0 Ω, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGOoaiaaykW7cqaHjpWDdaWgaaWcbaGa aGimaaqabaGccqGHsgIRcqqHPoWvcaaISaaaaa@43DB@

             γ 0 :=γ | ω R . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGOoaiaai2dacqaHZoWzcaaI8bWaaSba aSqaaiabeM8a3naaBaaabaGaamOuaaqabaaabeaakiaai6caaaa@4289@

 Здесь Ω:=γ( ω R ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG Ooaiaai2dacqaHZoWzcaaIOaGaeqyYdC3aaSbaaSqaaiaadkfaaeqa aOGaaGykaaaa@4106@  обозначает образ плоскости редукции, который можно назвать поверхностью редукции.

Предположим теперь, что плоскость редукции ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ , хотя бы некоторой своей частью, выходит за пределы отсчетной формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ . Тогда примем следующее допущение: плоскость редукции находится в малой окрестности U R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFueFvdaWgaaWcbaGa amOuaaqabaaaaa@4473@  множества S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ . В таком случае можно ожидать, что деформация γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@  продолжается до некоторого гомеоморфизма γ ¯ : U R U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq aHZoWzaaGaaGOoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=rr8vnaaBaaaleaacaWGsbaabeaakiabgkziUk ab=rr8vbaa@4C50@  этой окрестности на окрестность U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFueFvaaa@4370@  множества S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ . Образ Ω= γ ¯ ( ω R ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaaG ypamaanaaabaGaeq4SdCgaaiaaiIcacqaHjpWDdaWgaaWcbaGaamOu aaqabaGccaaIPaaaaa@4053@  плоскости редукции и тогда определяет поверхность редукции. Соответствующую деформацию обозначим как γ ¯ 0 : ω R Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq aHZoWzaaWaaSbaaSqaaiaaicdaaeqaaOGaaGOoaiaaykW7cqaHjpWD daWgaaWcbaGaamOuaaqabaGccqGHsgIRcqqHPoWvaaa@4353@ .

Поскольку физическое пространство E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  обладает аффинно-евклидовой структурой (1), можно определить векторное поле перемещений:

                                                          u: S R V, X vec(X,γ(X)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaajwhacaaI6aGaaGPaVprr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGae8NeXp1aaSbaaSqaaiaadkfaaeqaaaGcbaGaey OKH4Qae8xfXBLaaGilaaqaaiaadIfaaeaacqWIMgsycaqG2bGaaeyz aiaabogacaaIOaGaamiwaiaaiYcacaaMc8Uaeq4SdCMaaGikaiaadI facaaIPaGaaGykaiaai6caaaaaaa@5ADC@                                                               (21)

 Его градиент u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaaaa@3A8D@  есть линейное отображение VV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvcqGHsgIRcqWF veVvaaa@4740@ , обеспечивающее наилучшее линейное приближение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@  в окрестности каждой точки X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne Xp1aaSbaaSqaaiaadkfaaeqaaaaa@46D0@ :

                                                    u(X+h)=u(X)+u(X)[h]+o(h). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWGybGaey4kaSIaaKiAaiaaiMcacaaI9aGaaKyDaiaaiIcacaWG ybGaaGykaiabgUcaRiabgEGirlaajwhacaaIOaGaamiwaiaaiMcaca aIBbGaaKiAaiaai2facqGHRaWkcaqIVbGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaajIgacqWFLicucaaIPaGaaGOlaaaa@5550@

В поле базисов e ρ , e θ , e ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca qILbWaaSbaaSqaaiabeg8aYbqabaGccaaISaGaaGPaVlaajwgadaWg aaWcbaGaeqiUdehabeaakiaaiYcacaaMc8UaaKyzamaaBaaaleaacq aH2oGEaeqaaaGccaGLOaGaayzkaaaaaa@46B7@  градиент u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaaaa@3A8D@  представлен в виде разложения

                                        u= u ,α β + u γ Γ γα β g αδ e β e δ + w ,α g αδ k e δ + u ,ζ β e β k+ w ,ζ kk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaiaai2dadaqadaqaaiaadwhadaqhaaWcbaGaaGilaiabeg7aHbqa aiabek7aIbaakiabgUcaRiaadwhadaahaaWcbeqaaiabeo7aNbaaki abfo5ahnaaDaaaleaacqaHZoWzcqaHXoqyaeaacqaHYoGyaaaakiaa wIcacaGLPaaacaWGNbWaaWbaaSqabeaacqaHXoqycqaH0oazaaGcca qILbWaaSbaaSqaaiabek7aIbqabaGccqGHxkcXcaqILbWaaSbaaSqa aiabes7aKbqabaGccqGHRaWkcaWG3bWaaSbaaSqaaiaaiYcacqaHXo qyaeqaaOGaam4zamaaCaaaleqabaGaeqySdeMaeqiTdqgaaOGaaK4A aiabgEPielaajwgadaWgaaWcbaGaeqiTdqgabeaakiabgUcaRiaadw hadaqhaaWcbaGaaGilaiabeA7a6bqaaiabek7aIbaakiaajwgadaWg aaWcbaGaeqOSdigabeaakiabgEPielaajUgacqGHRaWkcaWG3bWaaS baaSqaaiaaiYcacqaH2oGEaeqaaOGaaK4AaiabgEPielaajUgaaaa@7B49@

по диадному базису ( e i e k ) i,k=1 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaajw gadaWgaaWcbaGaamyAaaqabaGccqGHxkcXcaqILbWaaSbaaSqaaiaa dUgaaeqaaOGaaGykamaaDaaaleaacaWGPbGaaGilaiaaykW7caWGRb GaaGypaiaaigdaaeaacaaIZaaaaaaa@462A@ . Здесь u= u α e α +wk MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dacaWG1bWaaWbaaSqabeaacqaHXoqyaaGccaqILbWaaSbaaSqaaiab eg7aHbqabaGccqGHRaWkcaWG3bGaaK4Aaaaa@4237@ . Приняв во внимание формулы (19) и (20), компоненты полученного разложения можно записать в виде матрицы

                            u = c ω 2 du ω + ev ω + u ,ρ b ω 2 eu ω + fv ω + u ,θ a ω 2 eu ω + fv ω + u ,θ b ω 2 du ω + ev ω + u ,ρ u ζ c ω 2 du ω + hv ω + v ,ρ b ω 2 hu ω + jv ω + v ,θ a ω 2 hu ω + jv ω + v ,θ b ω 2 du ω hv ω + v ,ρ v ζ c w ,ρ ω 2 b w ,θ ω 2 a w ,θ ω 2 b w ,ρ ω 2 w ζ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq GHhis0caqI1baacaGLBbGaayzxaaGaaGypamaadmaabaqbaeqabqWa aaaabaWaaSaaaeaacaWGJbaabaGaeqyYdC3aaWbaaSqabeaacaaIYa aaaaaakmaabmaabaWaaSaaaeaacaWGKbGaamyDaaqaaiabeM8a3baa cqGHRaWkdaWcaaqaaiaadwgacaWG2baabaGaeqyYdChaaiabgUcaRi aadwhadaWgaaWcbaGaaGilaiabeg8aYbqabaaakiaawIcacaGLPaaa cqGHsisldaWcaaqaaiaadkgaaeaacqaHjpWDdaahaaWcbeqaaiaaik daaaaaaOWaaeWaaeaadaWcaaqaaiaadwgacaWG1baabaGaeqyYdCha aiabgUcaRmaalaaabaGaamOzaiaadAhaaeaacqaHjpWDaaGaey4kaS IaamyDamaaBaaaleaacaaISaGaeqiUdehabeaaaOGaayjkaiaawMca aaqaamaalaaabaGaamyyaaqaaiabeM8a3naaCaaaleqabaGaaGOmaa aaaaGcdaqadaqaamaalaaabaGaamyzaiaadwhaaeaacqaHjpWDaaGa ey4kaSYaaSaaaeaacaWGMbGaamODaaqaaiabeM8a3baacqGHRaWkca WG1bWaaSbaaSqaaiaaiYcacqaH4oqCaeqaaaGccaGLOaGaayzkaaGa eyOeI0YaaSaaaeaacaWGIbaabaGaeqyYdC3aaWbaaSqabeaacaaIYa aaaaaakmaabmaabaWaaSaaaeaacaWGKbGaamyDaaqaaiabeM8a3baa cqGHRaWkdaWcaaqaaiaadwgacaWG2baabaGaeqyYdChaaiabgUcaRi aadwhadaWgaaWcbaGaaGilaiabeg8aYbqabaaakiaawIcacaGLPaaa aeaacaWG1bWaaSbaaSqaaiabeA7a6bqabaaakeaadaWcaaqaaiaado gaaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaadaWc aaqaaiaadsgacaWG1baabaGaeqyYdChaaiabgUcaRmaalaaabaGaam iAaiaadAhaaeaacqaHjpWDaaGaey4kaSIaamODamaaBaaaleaacaaI SaGaeqyWdihabeaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaam OyaaqaaiabeM8a3naaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaamaa laaabaGaamiAaiaadwhaaeaacqaHjpWDaaGaey4kaSYaaSaaaeaaca WGQbGaamODaaqaaiabeM8a3baacqGHRaWkcaWG2bWaaSbaaSqaaiaa iYcacqaH4oqCaeqaaaGccaGLOaGaayzkaaaabaWaaSaaaeaacaWGHb aabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaa aeaacaWGObGaamyDaaqaaiabeM8a3baacqGHRaWkdaWcaaqaaiaadQ gacaWG2baabaGaeqyYdChaaiabgUcaRiaadAhadaWgaaWcbaGaaGil aiabeI7aXbqabaaakiaawIcacaGLPaaacqGHsisldaWcaaqaaiaadk gaaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaadaWc aaqaaiaadsgacaWG1baabaGaeqyYdChaaiabgkHiTmaalaaabaGaam iAaiaadAhaaeaacqaHjpWDaaGaey4kaSIaamODamaaBaaaleaacaaI SaGaeqyWdihabeaaaOGaayjkaiaawMcaaaqaaiaadAhadaWgaaWcba GaeqOTdOhabeaaaOqaamaalaaabaGaam4yaiaadEhadaWgaaWcbaGa aGilaiabeg8aYbqabaaakeaacqaHjpWDdaahaaWcbeqaaiaaikdaaa aaaOGaeyOeI0YaaSaaaeaacaWGIbGaam4DamaaBaaaleaacaaISaGa eqiUdehabeaaaOqaaiabeM8a3naaCaaaleqabaGaaGOmaaaaaaaake aadaWcaaqaaiaadggacaWG3bWaaSbaaSqaaiaaiYcacqaH4oqCaeqa aaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaala aabaGaamOyaiaadEhadaWgaaWcbaGaaGilaiabeg8aYbqabaaakeaa cqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaaGcbaGaam4DamaaBaaale aacqaH2oGEaeqaaaGcbaaabaaabaaaaaGaay5waiaaw2faaiaaiYca aaa@FD2C@

 в которой используются обозначения u= u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG1bWaaWbaaSqabeaacaaIXaaaaaaa@3BAA@ , v= u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG1bWaaWbaaSqabeaacaaIYaaaaaaa@3BAC@ .

Деформации плоскости редукции отвечает векторное поле перемещений u 0 :ωV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIWaaabeaakiaaiQdacaaMc8UaeqyYdCNaeyOKH46efv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4B6B@ , которое определяется, соответственно, как

                                             u 0 (X):=vec(X, γ 0 (X))или u 0 (X):=vec(X, γ ¯ 0 (X)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWGybGaaGykaiaaiQdacaaI9aGa aeODaiaabwgacaqGJbGaaGikaiaadIfacaaISaGaaGPaVlabeo7aNn aaBaaaleaacaaIWaaabeaakiaaiIcacaWGybGaaGykaiaaiMcacaaM f8UaaeioeiaabUdbcaqG4qGaaGzbVlaajwhadaWgaaWcbaGaaGimaa qabaGccaaIOaGaamiwaiaaiMcacaaI6aGaaGypaiaabAhacaqGLbGa ae4yaiaaiIcacaWGybGaaGilaiaaykW7daqdaaqaaiabeo7aNbaada WgaaWcbaGaaGimaaqabaGccaaIOaGaamiwaiaaiMcacaaIPaGaaGOl aaaa@61EC@

Кроме того, используя координатное представление (17) отсчетной формы, мы можем построить разложение поля перемещений (21) по малому параметру z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@3906@ , связанному с толщиной[1]:

                                                        u( ρ 1 , ρ 2 ,z)= n=0 z n u n ( ρ 1 , ρ 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacqaHbpGCdaahaaWcbeqaaiaaigdaaaGccaaISaGaaGPaVlabeg8a YnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMc8UaamOEaiaaiMcaca aI9aWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0Ga eyyeIuoakiaadQhadaahaaWcbeqaaiaad6gaaaGccaqI1bWaaSbaaS qaaiaad6gaaeqaaOGaaGikaiabeg8aYnaaCaaaleqabaGaaGymaaaa kiaaiYcacaaMc8UaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaaGykai aaiYcaaaa@5A5E@

где коэффициенты могут быть, при известных аналитических предположениях, определены как производные u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ :

                                                      u n ( ρ 1 , ρ 2 )= 1 n! n z n u( ρ 1 , ρ 2 ,z )| z=0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaWGUbaabeaakiaaiIcacqaHbpGCdaahaaWcbeqaaiaaigda aaGccaaISaGaaGPaVlabeg8aYnaaCaaaleqabaGaaGOmaaaakiaaiM cacaaI9aWaaSaaaeaacaaIXaaabaGaamOBaiaaigcaaaWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaad6gaaaaakeaacqGHciITcaWG6bWaaW baaSqabeaacaWGUbaaaaaakiaajwhacaaIOaGaeqyWdi3aaWbaaSqa beaacaaIXaaaaOGaaGilaiaaykW7cqaHbpGCdaahaaWcbeqaaiaaik daaaGccaaISaGaaGPaVlaadQhacaaIPaGaaGiFamaaBaaaleaacaWG 6bGaaGypaiaaicdaaeqaaOGaaGOlaaaa@5E59@

Будем далее полагать, что нулевые термы разложения u 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIWaaabeaaaaa@39ED@  совпадают со смещениями точек плоскости редукции. Таким образом, вместо трехмерной задачи относительно u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@  можно рассмотреть двумерную задачу относительно последовательности неизвестных u n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaWGUbaabeaaaaa@3A26@ , которая намного проще первой. В этом случае градиент деформации можно выразить в терминах u n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaWGUbaabeaaaaa@3A26@ :

             u= n=0 z n ω u n + n=1 n z n1 u n k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaK yDaiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6Hi LcqdcqGHris5aOGaamOEamaaCaaaleqabaGaamOBaaaakiabgEGirp aaBaaaleaacqaHjpWDaeqaaOGaaKyDamaaBaaaleaacaWGUbaabeaa kiabgUcaRmaaqahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIu kaniabggHiLdGccaWGUbGaamOEamaaCaaaleqabaGaamOBaiabgkHi TiaaigdaaaGccaqI1bWaaSbaaSqaaiaad6gaaeqaaOGaey4LIqSaaK 4Aaaaa@5A62@

             null

 

При наличии лишь конечного числа элементов мы приходим к асимптотическому представлению. Если же учесть элементы степени не выше единицы, то формально:

                                      u= u 0 +z u 1 +o z ,u= ω u 0 + u 1 k+z ω u 1 +2 u 2 k +o z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dacaqI1bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamOEaiaajwha daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaqIVbWaaeWaaeaacaWG6b aacaGLOaGaayzkaaGaaGilaiaaywW7caaMf8Uaey4bIeTaaKyDaiaa i2dacqGHhis0daWgaaWcbaGaeqyYdChabeaakiaajwhadaWgaaWcba GaaGimaaqabaGccqGHRaWkcaqI1bWaaSbaaSqaaiaaigdaaeqaaOGa ey4LIqSaaK4AaiabgUcaRiaadQhadaqadaqaaiabgEGirpaaBaaale aacqaHjpWDaeqaaOGaaKyDamaaBaaaleaacaaIXaaabeaakiabgUca RiaaikdacaaMi8UaaKyDamaaBaaaleaacaaIYaaabeaakiabgEPiel aajUgaaiaawIcacaGLPaaacqGHRaWkcaqIVbWaaeWaaeaacaWG6baa caGLOaGaayzkaaGaaGOlaaaa@6C7E@                                           (22)

 Появление u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIYaaabeaaaaa@39EF@  в выражении для градиента деформации асимптотически согласовано, но приводит к расхождению со стандартным подходом в теории оболочек. Чтобы избежать этого расхождения, мы можем либо пренебречь этим членом, либо изменить подход к деформации, рассматривая (22) как точное выражение для деформации двумерного континуума Коссера. В настоящей работе мы используем последний подход. Таким образом, в соответствии с идеями, восходящими к работам Фойгта и братьев Коссера Voigt1887Doubler,Cosserat1909DoublerVoigt1887,Cosserat1909, будем полагать, что пластина является двумерным плоским континуумом, каждая частица которого MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  микроконтинуум (по терминологии Миндлина Mindlin1964) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  движется подобно абсолютно твердому телу. С формальной точки зрения в таком случае пластина рассматривается как упорядоченная пара ( ω R ,D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeM 8a3naaBaaaleaacaWGsbaabeaakiaaiYcacaaMc8UaaKiraiaaiMca aaa@3F56@ , где D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiraaaa@38D6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  векторное поле на ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  (по терминологии Ericksen1957 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  поле директоров), которое при деформировании пластины может лишь менять направление, но не длину. Формулы (22) теперь записываются следующим образом:

                                                  u= u +z u 1 ,u= ω u + u 1 k+z ω u 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dadaWfGaqaaiaajwhaaSqabeaacqWIyiYBaaGccqGHRaWkcaWG6bGa aKyDamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMf8UaaGzbVlabgE GirlaajwhacaaI9aGaey4bIe9aaSbaaSqaaiabeM8a3bqabaGcdaWf GaqaaiaajwhaaSqabeaacqWIyiYBaaGccqGHRaWkcaqI1bWaaSbaaS qaaiaaigdaaeqaaOGaey4LIqSaaK4AaiabgUcaRiaadQhacqGHhis0 daWgaaWcbaGaeqyYdChabeaakiaajwhadaWgaaWcbaGaaGymaaqaba GccaaISaaaaa@5B45@

без термов порядка o z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4Bamaabm aabaGaamOEaaGaayjkaiaawMcaaaaa@3B89@ . Здесь u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca qI1baaleqabaGaeSigI8gaaaaa@3A8A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  поле смещений точек ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ , а u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIXaaabeaaaaa@39EE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторое поле, обусловленное наличием дополнительных степеней свободы у частиц пластины.

Имея в виду записать явное выражение для поля u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIXaaabeaaaaa@39EE@ , примем во внимание, что в соответствии с теоремами Эйлера[2] и Шаля" href="#_ftn3" name="_ftnref3">[3] Pars1971_Rus, движение каждой частицы пластины является композицией перемещения точки ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@  и поворота линейных элементов, которые трансверсальны к ω R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadkfaaeqaaaaa@3AD7@ . В этой связи мы в действительности имеем соотношения:

             u= u +RD MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dadaWfGaqaaiaajwhaaSqabeaacqWIyiYBaaGccqGHRaWkcaqIsbGa aGzaVlabgwSixlaaygW7caqIebaaaa@4447@

             = u +D RD D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaxa cabaGaaKyDaaWcbeqaaiablIHiVbaakiabgUcaRebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaajseacqWFLicudaWcaaqaaiaajkfacaaMb8 UaeyyXICTaaGzaVlaajseaaeaacqWFLicucaqIebGae8xjIafaaaaa @4E01@

             = u +z u 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaxa cabaGaaKyDaaWcbeqaaiablIHiVbaakiabgUcaRiaadQhacaqI1bWa aSbaaSqaaiaaigdaaeqaaOGaaGilaaaa@3FE3@

 и поля z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@3906@ , u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacaaIXaaabeaaaaa@39EE@  определяются выражениями:

                                                            z:=D, u 1 := RD D , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiQ dacaaI9aqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaaKiraiab=vIi qjaaiYcacaaMf8UaaKyDamaaBaaaleaacaaIXaaabeaakiaaiQdaca aI9aWaaSaaaeaacaqIsbGaaGzaVlabgwSixlaaygW7caqIebaabaGa e8xjIaLaaKiraiab=vIiqbaacaaISaaaaa@52CB@

где R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaaaa@38E4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  собственный ортогональный тензор ( R T R=I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuamaaCa aaleqabaGaaeivaaaakiaaygW7cqGHflY1caaMb8UaaKOuaiaai2da caqIjbaaaa@41C8@ , |R|=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaajk facaaI8bGaaGypaiaaigdaaaa@3C72@  ).

В трехмерном пространстве вращение твердого тела производится вокруг некоторой прямой, содержащейся в теле, на определенный угол[4]. В этой связи явное выражение для тензора R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaaaa@38E4@  может быть получено на основании формулы Родрига Pars1971_Rus:

                                                       RD=γD+(1γ)(nD)n+σn×D, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaiaajs eacaaI9aGaeq4SdCMaaKiraiabgUcaRiaaiIcacaaIXaGaeyOeI0Ia eq4SdCMaaGykaiaaiIcacaqIUbGaaKiraiaaiMcacaqIUbGaey4kaS Iaeq4WdmNaaKOBaiabgEna0kaajseacaaISaaaaa@4DE6@                                                            (23)

 где n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOBaaaa@3900@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  единичный вектор, направленный вдоль оси вращения, а числа γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@  и σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  определены равенствами γ=cosα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ypaiGacogacaGGVbGaai4Caiabeg7aHbaa@3EE7@  и σ=sinα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ypaiGacohacaGGPbGaaiOBaiabeg7aHbaa@3F08@ , в которых α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  угол поворота.

Считая угол α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  малым, можно заменить формулу (23) ее линейным приближением, полагая γ1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey isISRaaGymaaaa@3C1A@  и σα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey isISRaeqySdegaaa@3D1A@ :

                                                               RDD+ωD, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaiaajs eacqGHijYUcaqIebGaey4kaScccmGae8xYdCNaaKiraiaaiYcaaaa@406F@

где ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xYdC haaa@39DC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  антисимметричный тензор, определенный равенством ω=α n × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xYdC NaaGypaiabeg7aHjaaj6gadaWgaaWcbaGaey41aqlabeaaaaa@3F7E@ , в котором n × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOBamaaBa aaleaacqGHxdaTaeqaaaaa@3B43@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Гиббсов крест вектора.

Таким образом, мы приходим к представлению типа Уфлянда MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Миндлина. Однако можно пойти еще дальше и предположить, следуя Кирхгофу и Ляву Reddy2006, что значения поля директоров D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiraaaa@38D6@  нормальны к плоскости редукции и после деформации значения измененного поля также нормальны к поверхности осреднения. В таком случае повороты относительно плоскости редукции могут быть охарактеризованы в терминах одной скалярной функции w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WG3baaleqabaGaeSigI8gaaaaa@3A86@ , и мы приходим к выражениям, представляющим кинематические гипотезы Кирхгофа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Лява:

                                                   u= u ζ w = u α ζ g αβ w ,β e α + w k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dadaWfGaqaaiaajwhaaSqabeaacqWIyiYBaaGccqGHsislcqaH2oGE caaMi8Uaey4bIe9aaCbiaeaacaWG3baaleqabaGaeSigI8gaaOGaaG ypamaabmaabaWaaCbiaeaacaWG1baaleqabaGaeSigI8gaaOWaaWba aSqabeaacqaHXoqyaaGccqGHsislcqaH2oGEcaWGNbWaaWbaaSqabe aacqaHXoqycqaHYoGyaaGcdaWfGaqaaiaadEhaaSqabeaacqWIyiYB aaGcdaWgaaWcbaGaaGilaiabek7aIbqabaaakiaawIcacaGLPaaaca qILbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkdaWfGaqaaiaadEha aSqabeaacqWIyiYBaaGccaqIRbGaaGilaaaa@5F51@

или в компонентах:

                                          u= u ζ ω 2 c w ,ρ b w ,θ e ρ + v ζ ω 2 a w ,θ b w ,ρ e θ + w k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaai2 dadaqadaqaamaaxacabaGaamyDaaWcbeqaaiablIHiVbaakiabgkHi TmaalaaabaGaeqOTdOhabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaa aakmaabmaabaGaam4yamaaxacabaGaam4DaaWcbeqaaiablIHiVbaa kmaaBaaaleaacaaISaGaeqyWdihabeaakiabgkHiTiaadkgadaWfGa qaaiaadEhaaSqabeaacqWIyiYBaaGcdaWgaaWcbaGaaGilaiabeI7a XbqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaqILbWaaSbaaS qaaiabeg8aYbqabaGccqGHRaWkdaqadaqaamaaxacabaGaamODaaWc beqaaiablIHiVbaakiabgkHiTmaalaaabaGaeqOTdOhabaGaeqyYdC 3aaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaamyyamaaxacabaGa am4DaaWcbeqaaiablIHiVbaakmaaBaaaleaacaaISaGaeqiUdehabe aakiabgkHiTiaadkgadaWfGaqaaiaadEhaaSqabeaacqWIyiYBaaGc daWgaaWcbaGaaGilaiabeg8aYbqabaaakiaawIcacaGLPaaaaiaawI cacaGLPaaacaqILbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkdaWf GaqaaiaadEhaaSqabeaacqWIyiYBaaGccaqIRbGaaGOlaaaa@75E8@  

 

В таком случае градиент перемещений β:=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NSdi MaaGOoaiaai2dacqGHhis0caqI1baaaa@3DC1@  может быть представлен в виде следующего диадного разложения:

             β= ( u β ζ g βϰ w ,ϰ ) ,α +( u γ ζ g γϰ w ,ϰ ) Γ γα β g αδ e β e δ + w ,α g αδ k e δ g βϰ w ,ϰ e β k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NSdi MaaGypamaadmaabaGaaGikamaaxacabaGaamyDaaWcbeqaaiablIHi VbaakmaaCaaaleqabaGaeqOSdigaaOGaeyOeI0IaeqOTdONaam4zam aaCaaaleqabaGaeqOSdi2efv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiuGacqGFWpq+aaGcdaWfGaqaaiaadEhaaSqabeaacqWIyi YBaaGcdaWgaaWcbaGaaGilaiab+b=a5dqabaGccaaIPaWaaSbaaSqa aiaaiYcacqaHXoqyaeqaaOGaey4kaSIaaGikamaaxacabaGaamyDaa WcbeqaaiablIHiVbaakmaaCaaaleqabaGaeq4SdCgaaOGaeyOeI0Ia eqOTdONaam4zamaaCaaaleqabaGaeq4SdCMae4h8dKpaaOWaaCbiae aacaWG3baaleqabaGaeSigI8gaaOWaaSbaaSqaaiaaiYcacqGFWpq+ aeqaaOGaaGykaiabfo5ahnaaDaaaleaacqaHZoWzcqaHXoqyaeaacq aHYoGyaaaakiaawUfacaGLDbaacaWGNbWaaWbaaSqabeaacqaHXoqy cqaH0oazaaGccaqILbWaaSbaaSqaaiabek7aIbqabaGccqGHxkcXca qILbWaaSbaaSqaaiabes7aKbqabaGccqGHRaWkdaWfGaqaaiaadEha aSqabeaacqWIyiYBaaGcdaWgaaWcbaGaaGilaiabeg7aHbqabaGcca WGNbWaaWbaaSqabeaacqaHXoqycqaH0oazaaGccaqIRbGaey4LIqSa aKyzamaaBaaaleaacqaH0oazaeqaaOGaeyOeI0Iaam4zamaaCaaale qabaGaeqOSdiMae4h8dKpaaOWaaCbiaeaacaWG3baaleqabaGaeSig I8gaaOWaaSbaaSqaaiaaiYcacqGFWpq+aeqaaOGaaKyzamaaBaaale aacqaHYoGyaeqaaOGaey4LIqSaaK4Aaiaai6caaaa@A5AF@                                                     (24)

 

Тензорному полю градиента перемещений β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NSdi gaaa@39B0@  соответствует поле градиента деформации F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ , которое вычисляется по формуле

                                                                F=I+β. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraiaai2 dacaqIjbGaey4kaScccmGae8NSdiMaaGOlaaaa@3DB6@                                                                     (25)

 Здесь I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKysaaaa@38DB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  единичный тензор, который в диадном разложении представляется единичной матрицей:

                                                        I= e ρ e ρ + e θ e θ +kk. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKysaiaai2 dacaqILbWaaSbaaSqaaiabeg8aYbqabaGccqGHxkcXcaqILbWaaWba aSqabeaacqaHbpGCaaGccqGHRaWkcaqILbWaaSbaaSqaaiabeI7aXb qabaGccqGHxkcXcaqILbWaaWbaaSqabeaacqaH4oqCaaGccqGHRaWk caqIRbGaey4LIqSaaK4Aaiaai6caaaa@4FAB@

3 Меры напряжений и деформаций

3.1 О координатах в отсчетном описании

В классической теории пластин координатные представления полей и дифференциальных операторов рассматриваются относительно натуральной отсчетной формы S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , поскольку ее геометрия предполагается известной, а отклик имеет наиболее простой вид. Вместе с тем если в теле присутствуют непрерывно распределенные дефекты, то, как это обсуждалось в разделе 1.4, натуральная форма существует вне рамок евклидова пространства E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ . В этой связи наблюдению и измерению доступна лишь актуальная форма S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , и потому только на ней можно явным образом ввести координатную сеть. Поскольку настоящая работа по-прежнему апеллирует к отсчетной методологии, следует указать способы явного определения отсчетных координат и пересчета полей из актуальных координат в отсчетные. Этому посвящен настоящий раздел.

Предположим, что выбрана некоторая форма S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , которая в общем случае самонапряжена и подвержена воздействию дополнительных внешних полей, за счет которых можно по-прежнему считать форму допустимой и выделить в ней плоскость редукции. Область S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  рассматривается в качестве отправной точки для построения неевклидовой отсчетной формы; по этой причине назовем ее промежуточной формой. Стирая геометрию с пространства S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , индуцированную геометрией евклидова объемлющего пространства, приходим к многообразию S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , которое будет носителем новой неевклидовой геометрии. Откладывая на потом реализацию процедуры синтеза геометрии, уточним способ введения координат на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ .

Пусть S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  актуальная форма, непосредственно наблюдаемая в эксперименте или технологическом процессе. Хотя она по-прежнему принадлежит множеству допустимых форм, ей соответствует поверхность осреднения Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@ , которая в общем случае не является плоскостью. Однако картрирование этой формы осуществляется по аналогии с (17):

                                      S= xE:x=O+ x 1 ( ρ ˜ 1 , ρ ˜ 2 )i+ x 2 ( ρ ˜ 1 , ρ ˜ 2 )j+zk,( ρ ˜ 1 , ρ ˜ 2 ,z)D 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=ucaaI9aWaaiWa aeaacaWG4bGaeyicI4Sae8hmHuKaaGOoaiaaysW7caWG4bGaaGypai aad+eacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIXaaaaOGaaGikamaa GaaabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaigdaaaGccaaISa GaaGPaVpaaGaaabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaikda aaGccaaIPaGaaKyAaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaa GccaaIOaWaaacaaeaacqaHbpGCaiaawoWaamaaCaaaleqabaGaaGym aaaakiaaiYcacaaMc8+aaacaaeaacqaHbpGCaiaawoWaamaaCaaale qabaGaaGOmaaaakiaaiMcacaqIQbGaey4kaSIaamOEaiaajUgacaaI SaGaaGzbVlaaiIcadaaiaaqaaiabeg8aYbGaay5adaWaaWbaaSqabe aacaaIXaaaaOGaaGilaiaaykW7daaiaaqaaiabeg8aYbGaay5adaWa aWbaaSqabeaacaaIYaaaaOGaaGilaiaaykW7caWG6bGaaGykaiabgI GiolaadseacqGHckcZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0Hgi uD3BaGGbaiab+1risnaaCaaaleqabaGaaG4maaaaaOGaay5Eaiaaw2 haaiaai6caaaa@8F2B@

Здесь ( ρ ˜ 1 , ρ ˜ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaaGa aabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaigdaaaGccaaISaGa aGPaVpaaGaaabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaikdaaa GccaaIPaaaaa@4296@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  внутренние координаты на поверхности Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@ , а z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@3906@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  трансверсальная координата.

Предполагается, что форма S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  столь тонка, что содержится в малой окрестности Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@  Lebedev2010. Тогда деформация актуальной формы S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  в промежуточную форму S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  представлена гомеоморфизмом

             γ:S S R , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jr8tjabgkziUorr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHT gD1jhaiyaacqGFsa=udaWgaaWcbaGaamOuaaqabaGccaaISaaaaa@57AE@

             xX. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiablA AiHjaadIfacaaIUaaaaa@3C52@

 Отметим, что его область определения рассматривается как пространство аффинной связности, хотя и с тривиальной евклидовой геометрией, в то время как область прибытия есть многообразие, лишенное какой-либо геометрии. Выбор такого представления не случаен и соответствует методологии работы с самонапряженными телами; деформацию γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@  будем называть обратной деформацией (аллюзия к работе Шилдта Schield1967).

Охарактеризуем теперь способ переноса координат с формы S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  на многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ . Пусть ( U ˜ , Q ˜ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaaGa aabaGaamyvaaGaay5adaGaaGilaiaaykW7daaiaaqaaiaadgfaaiaa woWaaiaaiMcaaaa@3EE1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  карта на S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , порожденная координатами ( ρ ˜ 1 , ρ ˜ 2 ,z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikamaaGa aabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaigdaaaGccaaISaGa aGPaVpaaGaaabaGaeqyWdihacaGLdmaadaahaaWcbeqaaiaaikdaaa GccaaISaGaaGPaVlaadQhacaaIPaaaaa@45D6@ . Здесь U ˜ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGvbaacaGLdmaacqGHckcZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jr8tbaa@4704@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  открытое множество, которое в общем случае не совпадает с формой S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , а

             Q ˜ : U ˜ 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGrbaacaGLdmaacaaI6aGaaGPaVpaaGaaabaGaamyvaaGaay5adaGa eyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFDeIudaahaaWcbeqaaiaaiodaaaGccaaISaaaaa@4BD9@

             x( ρ ˜ 1 , ρ ˜ 2 ,z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiablA AiHjaaiIcadaaiaaqaaiabeg8aYbGaay5adaWaaWbaaSqabeaacaaI XaaaaOGaaGilaiaaykW7daaiaaqaaiabeg8aYbGaay5adaWaaWbaaS qabeaacaaIYaaaaOGaaGilaiaaykW7caWG6bGaaGykaaaa@488C@

  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  картрирующее отображение. Тогда пара (γ( U ˜ ), Q ˜ γ 1 | γ( U ˜ ) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeo 7aNjaaiIcadaaiaaqaaiaadwfaaiaawoWaaiaaiMcacaaISaGaaGPa VpaaGaaabaGaamyuaaGaay5adaGaeSigI8Maeq4SdC2aaWbaaSqabe aacqGHsislcaaIXaaaaOGaaGiFamaaBaaaleaacqaHZoWzcaaIOaWa aacaaeaacaWGvbaacaGLdmaacaaIPaaabeaakiaaiMcaaaa@4C91@  есть карта на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ . Следовательно, семейство карт A S ={( U ˜ i , Q ˜ i )} iI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaWe fv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+jb8tb qabaGccaaI9aGaaG4EaiaaiIcadaaiaaqaaiaadwfaaiaawoWaamaa BaaaleaacaWGPbaabeaakiaaiYcacaaMc8+aaacaaeaacaWGrbaaca GLdmaadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGyFamaaBaaaleaa caWGPbGaeyicI4Saamysaaqabaaaaa@5F7B@ , покрывающее актуальную форму S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , переходит в семейство карт A S R ={(γ( U ˜ i ), Q ˜ i γ 1 | γ( U ˜ i ) )} iI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaWe fv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+jb8tn aaBaaabaGaamOuaaqabaaabeaakiaai2dacaaI7bGaaGikaiabeo7a NjaaiIcadaaiaaqaaiaadwfaaiaawoWaamaaBaaaleaacaWGPbaabe aakiaaiMcacaaISaGaaGPaVpaaGaaabaGaamyuaaGaay5adaWaaSba aSqaaiaadMgaaeqaaOGaeSigI8Maeq4SdC2aaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGiFamaaBaaaleaacqaHZoWzcaaIOaWaaacaaeaa caWGvbaacaGLdmaadaWgaaqaaiaadMgaaeqaaiaaiMcaaeqaaOGaaG ykaiaai2hadaWgaaWcbaGaamyAaiabgIGiolaadMeaaeqaaaaa@6F32@ , покрывающее S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ . Тем самым координаты на отсчетной форме введены. Карты из набора A S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaWe fv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+jb8tn aaBaaabaGaamOuaaqabaaabeaaaaa@5108@  могут быть непосредственно использованы для координатного описания деформации:

                                                    γ ˜ = Q ˜ i γ ( Q ˜ i γ 1 ) 1 =Id: 3 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaacq aHZoWzaiaawoWaaiaai2dadaaiaaqaaiaadgfaaiaawoWaamaaBaaa leaacaWGPbaabeaakiablIHiVjabeo7aNjablIHiVjaaiIcadaaiaa qaaiaadgfaaiaawoWaamaaBaaaleaacaWGPbaabeaakiablIHiVjab eo7aNnaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiMcadaahaaWcbe qaaiabgkHiTiaaigdaaaGccaaI9aGaaeysaiaabsgacaaI6aGaaGPa Vprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi 1aaWbaaSqabeaacaaIZaaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaa caaIZaaaaOGaaGilaaaa@61EF@

и мы приходим к представлению, используемому в монографии Lurie1980. Наряду с этим карты из A S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaWe fv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+jb8tn aaBaaabaGaamOuaaqabaaabeaaaaa@5108@  могут быть использованы для тестирования других карт на принадлежность к гладкой структуре многообразия S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ . В явном виде, если (U,Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw facaaISaGaaGPaVlaadgfacaaIPaaaaa@3D5D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая карта на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , то она допустима лишь в том случае, когда для всех iI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaadMeaaaa@3B47@ , при которых U ˜ i U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca WGvbaacaGLdmaadaWgaaWcbaGaamyAaaqabaGccqGHPiYXcaWGvbGa eyiyIKRaeyybIymaaa@407F@ , функция замены координат

                                                      null

является диффеоморфизмом. Таким образом, хотя мы не обязаны использовать именно набор карт A S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqdaWgaaWcbaWe fv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab+jb8tn aaBaaabaGaamOuaaqabaaabeaaaaa@5108@ , другие карты могут быть с ним сопоставлены.

Поля, заданные на актуальной форме S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , могут быть пересчитаны на многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@  посредством операции прямого образа Abraham1988Doubler,Lychev2018DoublerAbraham1988,Lychev2018. В частности, если f:S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiQ dacaaMc8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFse=ucqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD 3BaGGbaiab+1risbaa@534C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  скалярное поле на актуальной форме (например, поле температуры или плотность упругой энергии), то его образ на промежуточной форме определяется как

                                                           f :=f γ 1 : S R . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqGHxiIkaeqaaOGaaGOoaiaai2dacaWGMbGaeSigI8Maeq4S dC2aaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGOoaiaaykW7tuuDJX wAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NeWp1aaSba aSqaaiaadkfaaeqaaOGaeyOKH46efv3ySLgznfgDOjdarCqr1ngBPr ginfgDObcv39gaiyaacqGFDeIucaaIUaaaaa@5EA2@                                                                (26)

 Если u:SV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiQ dacaaMc8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFse=ucqGHsgIRcqWFveVvaaa@4A89@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  векторное поле (в частности, поле перемещений или скорости), то его удобно интерпретировать как отображение u:STS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiQ dacaaMc8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFse=ucqGHsgIRcaWGubGae8NeXpfaaa@4B5C@ , т. е. сечение касательного расслоения TSS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXpLaeyOK H4Qae8NeXpfaaa@480D@ . Тогда перенос поля u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@  на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@  определяется как

                                                        u :=Tγu γ 1 : S R T S R . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDamaaBa aaleaacqGHxiIkaeqaaOGaaGOoaiaai2dacaWGubGaeq4SdCMaeSig I8MaaKyDaiablIHiVjabeo7aNnaaCaaaleqabaGaeyOeI0IaaGymaa aakiaaiQdacaaMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A 0vNCaGqbaiab=jb8tnaaBaaaleaacaWGsbaabeaakiabgkziUkaads facqWFsa=udaWgaaWcbaGaamOuaaqabaGccaaIUaaaaa@5B8D@                                                             (27)

 Заметим, что здесь недостаточно изменить область определения u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ ; необходимо также подправить область прибытия, для чего используется касательное отображение Tγ:TST S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabeo 7aNjaaiQdacaaMc8Uaamivamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGae8NeXpLaeyOKH4Qaamivamrr1ngBPrMrYf2A0v NCaeXbfv3ySLgzGyKCHTgD1jhaiyaacqGFsa=udaWgaaWcbaGaamOu aaqabaaaaa@5979@ . Другой пример MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  перенос тензорного поля g:STSTS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zaiaaiQ dacaaMc8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFse=ucqGHsgIRcaWGubGae8NeXpLaey4LIqSaamivaiab=jr8tb aa@500B@  (например, метрического тензора) на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , что дает поле g : S R T S R T S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zamaaBa aaleaacqGHxiIkaeqaaOGaaGOoaiaaykW7tuuDJXwAKzKCHTgD1jha ryqr1ngBPrgigjxyRrxDYbacfaGae8NeWp1aaSbaaSqaaiaadkfaae qaaOGaeyOKH4Qaamivaiab=jb8tnaaBaaaleaacaWGsbaabeaakiab gEPielaadsfacqWFsa=udaWgaaWcbaGaamOuaaqabaaaaa@5581@ , определенное соотношением

                                         X S R u,v T X S R : g | X (u,v)=g | γ 1 (X) ( T X γ 1 (u), T X γ 1 (u)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iwaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jha iuaacqWFsa=udaWgaaWcbaGaamOuaaqabaGccaaMe8UaeyiaIiIaaK yDaiaaiYcacaaMc8UaaKODaiabgIGiolaadsfadaWgaaWcbaGaamiw aaqabaGccqWFsa=udaWgaaWcbaGaamOuaaqabaGccaaI6aGaaGjbVl aajEgadaWgaaWcbaGaey4fIOcabeaakiaaiYhadaWgaaWcbaGaamiw aaqabaGccaaIOaGaaKyDaiaaiYcacaaMc8UaaKODaiaaiMcacaaI9a GaaK4zaiaaiYhadaWgaaWcbaGaeq4SdC2aaWbaaeqabaGaeyOeI0Ia aGymaaaacaaIOaGaamiwaiaaiMcaaeqaaOGaaGikaiaadsfadaWgaa WcbaGaamiwaaqabaGccqaHZoWzdaahaaWcbeqaaiabgkHiTiaaigda aaGccaaIOaGaaKyDaiaaiMcacaaISaGaaGPaVlaadsfadaWgaaWcba GaamiwaaqabaGccqaHZoWzdaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaIOaGaaKyDaiaaiMcacaaIPaGaaGOlaaaa@7EB2@                                             (28)

 Остальные примеры переноса полей, в частности полей напряжений, могут быть найдены в Lychev2018.

В формулах (26), (27) и (28) используется градиент обратной деформации γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@ . Поэтому, в частности, при переносе полей, определяющих геометрию на форме S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@ , мы получим геометрию на многообразии S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , ничем не отличающуюся от евклидовой. Однако можно сделать следующий шаг и заменить градиент Tγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabeo 7aNbaa@3A87@  на поле K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8lbaa@4492@  невырожденных линейных преобразований, не порожденное единой деформацией. Тогда придем к формулам, аналогичным тем, что написаны выше, и эти формулы также определяют перенос полей. Вместе с тем в этот перенос будет заложена дополнительная информация, связанная с несовместностью K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8lbaa@4492@ . Поэтому при переносе евклидовой геометрии с формы S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  на многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@  мы получим новую геометрию, отличающуюся от евклидовой.

В последующих рассуждениях мы будем предполагать, что геометрия на S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@  перенесена из S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@  посредством обратной деформации γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@39AE@ . Роль полученной геометрии исключительно вспомогательная; она нужна для того, чтобы продолжать использовать евклидовы представления дифференциальных операторов для формулировки уравнений поля. Но за это упрощение придется заплатить модификацией уравнения состояния, добавив туда в явном виде локальные деформации. Отметим, что возможен иной подход, не предполагающий вспомогательной евклидовой геометрии, а напрямую апеллирующий к неевклидовой геометрии натуральной формы. Но тогда в рамках него мы будем вынуждены использовать формализм ковекторнозначных дифференциальных форм и оператор Картана. Более подробно эти вопросы обсуждаются в статье Kanso2007. 

3.2 Энергетически сопряженные пары полей

Механика сплошной среды оперирует различными тензорами напряжений, среди которых тензоры напряжений Коши T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKivaaaa@38E6@ , Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа первого рода P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuaaaa@38E2@  и Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа второго рода S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uaaaa@38E5@ . Формула преобразования элементарных площадей (формула Нансона) в отсчетном и актуальном состоянии приводит к преобразованию Пиолы Gurtin2010:

                                                                P=JT F T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuaiaai2 dacaWGkbGaaKivaiaajAeadaahaaWcbeqaaiabgkHiTiaabsfaaaGc caaISaaaaa@3ED9@

связывающей напряжения Коши и Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа первого рода; здесь J=detF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaai2 daciGGKbGaaiyzaiaacshacaqIgbaaaa@3D39@ . Более простым является соотношение между двумя тензорами Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа

                                                                 P=FS. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuaiaai2 dacaqIgbGaaK4uaiaai6caaaa@3C10@                                                                      (29)

 В настоящей работе мы используем отсчетное описание, поэтому выбор должен быть сделан в пользу одного из тензоров Пиолы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Кирхгофа. Но любому такому выбору должен отвечать некоторый выбор меры деформации, допустимой с точки зрения принципа материальной индифферентности Truesdell2004. Будем выбирать меру деформации в соответствии с энергетической сопряженностью: каждый из термов в цепочке равенств

                                                            T:​D=J1P:F=​J1S:E

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  мощности, развиваемые соответствующими тензорами напряжений, характеризует энергетически сопряженную пару Gurtin2010. Здесь D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiraaaa@38D6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  симметричная часть градиента скорости, F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  градиент деформации, а E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFraaa@43E8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тензор Грина-Венана:

                                                              E= 1 2 F T FI . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrcaaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaajAeadaahaaWcbeqaai aabsfaaaGccaqIgbGaeyOeI0IaaKysaaGaayjkaiaawMcaaiaai6ca aaa@4CE8@                                                                  (30)

 В настоящей работе выбор сделан в пользу пары (S,E) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaajo facaaISaGaaGPaVprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8hHWxKaaGykaaaa@486C@ . При таком выборе: 1) мы имеем дело с симметричным тензором напряжений, преобразующим отсчетную нормаль в отсчетный вектор напряжений, и 2) удается выбрать потенциал, приводящий к закону состояния, внешне похожему на закон Гука.

3.3 Уравнения равновесия

Уравнения равновесия в отсчетном описании могут быть записаны в следующем виде:

                                                               di v R P+f=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiabgUcaRiaajAga caaI9aGaaCimaiaaiYcaaaa@40CA@                                                                   (31)

 где di v R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaaaa@3BDC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  оператор дивергенции в отсчетных координатах, f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOzaaaa@38F8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  плотность объемных сил, P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuaaaa@38E2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  тензор напряжений Пиола первого рода.

В настоящей работе дивергенция тензорного поля определяется в соответствии с Gurtin2010:

                                                        aV:adi v R P=di v R ( P T a), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaK yyaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae8xfXBLaaGOoaiaaysW7caqIHbGaamizaiaadMgacaWG2bWaaS baaSqaaiaadkfaaeqaaOGaaKiuaiaai2dacaWGKbGaamyAaiaadAha daWgaaWcbaGaamOuaaqabaGccaaIOaGaaKiuamaaCaaaleqabaGaae ivaaaakiaajggacaaIPaGaaGilaaaa@583F@

где справа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  дивергенция векторного поля. Таким образом, в терминах оператора Гамильтона, di v R P=P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiaai2dacaqIqbGa aGzaVlabgwSixlaaygW7cqGHhis0aaa@4547@ , что влечет разложение

                                                      di v R P= [P] ,j ij + [P] sj Γ sj i + [P] is Γ sj j e i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiaai2dadaqadaqa aiaaiUfacaqIqbGaaGyxamaaDaaaleaacaaISaGaamOAaaqaaiaadM gacaWGQbaaaOGaey4kaSIaaG4waiaajcfacaaIDbWaaWbaaSqabeaa caWGZbGaamOAaaaakiabfo5ahnaaDaaaleaacaWGZbGaamOAaaqaai aadMgaaaGccqGHRaWkcaaIBbGaaKiuaiaai2fadaahaaWcbeqaaiaa dMgacaWGZbaaaOGaeu4KdC0aa0baaSqaaiaadohacaWGQbaabaGaam OAaaaaaOGaayjkaiaawMcaaiaajwgadaWgaaWcbaGaamyAaaqabaGc caaISaaaaa@5C71@

или, если явно выделить третий элемент базиса k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4Aaaaa@38FD@ ,

                                      di v R P= [P] ,β αβ + [P] ,3 α3 + [P] γβ Γ γβ α + [P] αβ Γ βγ γ e α + [P] ,β 3β + [P] 3β Γ βγ γ + [P] ,3 33 k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiaai2dadaqadaqa aiaaiUfacaqIqbGaaGyxamaaDaaaleaacaaISaGaeqOSdigabaGaeq ySdeMaeqOSdigaaOGaey4kaSIaaG4waiaajcfacaaIDbWaa0baaSqa aiaaiYcacaaIZaaabaGaeqySdeMaaG4maaaakiabgUcaRiaaiUfaca qIqbGaaGyxamaaCaaaleqabaGaeq4SdCMaeqOSdigaaOGaeu4KdC0a a0baaSqaaiabeo7aNjabek7aIbqaaiabeg7aHbaakiabgUcaRiaaiU facaqIqbGaaGyxamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeu4K dC0aa0baaSqaaiabek7aIjabeo7aNbqaaiabeo7aNbaaaOGaayjkai aawMcaaiaajwgadaWgaaWcbaGaeqySdegabeaakiabgUcaRmaabmaa baGaaG4waiaajcfacaaIDbWaa0baaSqaaiaaiYcacqaHYoGyaeaaca aIZaGaeqOSdigaaOGaey4kaSIaaG4waiaajcfacaaIDbWaaWbaaSqa beaacaaIZaGaeqOSdigaaOGaeu4KdC0aa0baaSqaaiabek7aIjabeo 7aNbqaaiabeo7aNbaakiabgUcaRiaaiUfacaqIqbGaaGyxamaaDaaa leaacaaISaGaaG4maaqaaiaaiodacaaIZaaaaaGccaGLOaGaayzkaa GaaK4Aaiaai6caaaa@8BFB@

Принимая во внимание формулы (19), приходим к следующим выражениям для компонент дивергенции:

                                                  di v R P=[di v R P ] ρ e ρ + [di v R P] θ e θ + [di v R P] ζ e ζ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiaai2dacaaIBbGa amizaiaadMgacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaKiuaiaai2 fadaahaaWcbeqaaiabeg8aYbaakiaajwgadaWgaaWcbaGaeqyWdiha beaakiabgUcaRiaaiUfacaWGKbGaamyAaiaadAhadaWgaaWcbaGaam OuaaqabaGccaqIqbGaaGyxamaaCaaaleqabaGaeqiUdehaaOGaaKyz amaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaaG4waiaadsgacaWGPb GaamODamaaBaaaleaacaWGsbaabeaakiaajcfacaaIDbWaaWbaaSqa beaacqaH2oGEaaGccaqILbWaaSbaaSqaaiabeA7a6bqabaGccaaISa aaaa@6211@

 

             [di v R P] ρ =[P ] ,θ ρθ + [P] ,ζ ρζ + [P] ,ρ ρρ + 2d+h ω [P] ρρ + 2e+j ω [P] ρθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads gacaWGPbGaamODamaaBaaaleaacaWGsbaabeaakiaajcfacaaIDbWa aWbaaSqabeaacqaHbpGCaaGccaaI9aGaaG4waiaajcfacaaIDbWaa0 baaSqaaiaaiYcacqaH4oqCaeaacqaHbpGCcqaH4oqCaaGccqGHRaWk caaIBbGaaKiuaiaai2fadaqhaaWcbaGaaGilaiabeA7a6bqaaiabeg 8aYjabeA7a6baakiabgUcaRiaaiUfacaqIqbGaaGyxamaaDaaaleaa caaISaGaeqyWdihabaGaeqyWdiNaeqyWdihaaOGaey4kaSYaaSaaae aacaaIYaGaamizaiabgUcaRiaadIgaaeaacqaHjpWDaaGaaG4waiaa jcfacaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGccqGHRaWkda WcaaqaaiaaikdacaWGLbGaey4kaSIaamOAaaqaaiabeM8a3baacaaI BbGaaKiuaiaai2fadaahaaWcbeqaaiabeg8aYjabeI7aXbaakiabgU caRaaa@776E@

             + e ω [P] θρ + f ω [P] θθ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7cqGHRaWkdaWcaaqaaiaadwgaaeaacqaHjpWDaaGa aG4waiaajcfacaaIDbWaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGccq GHRaWkdaWcaaqaaiaadAgaaeaacqaHjpWDaaGaaG4waiaajcfacaaI DbWaaWbaaSqabeaacqaH4oqCcqaH4oqCaaGccaaISaaaaa@6BC6@

             θ =[P ] ,θ θθ + [P] ,ζ θζ + [P] ,ρ θρ + d+2h ω [P] θρ + e+2j ω [P] θθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacqaH4oqCaaGccaaI9aGaaG4waiaajcfacaaIDbWaa0baaSqaaiaa iYcacqaH4oqCaeaacqaH4oqCcqaH4oqCaaGccqGHRaWkcaaIBbGaaK iuaiaai2fadaqhaaWcbaGaaGilaiabeA7a6bqaaiabeI7aXjabeA7a 6baakiabgUcaRiaaiUfacaqIqbGaaGyxamaaDaaaleaacaaISaGaeq yWdihabaGaeqiUdeNaeqyWdihaaOGaey4kaSYaaSaaaeaacaWGKbGa ey4kaSIaaGOmaiaadIgaaeaacqaHjpWDaaGaaG4waiaajcfacaaIDb WaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGccqGHRaWkdaWcaaqaaiaa dwgacqGHRaWkcaaIYaGaamOAaaqaaiabeM8a3baacaaIBbGaaKiuai aai2fadaahaaWcbeqaaiabeI7aXjabeI7aXbaakiabgUcaRaaa@70AC@

             + g ω [P] ρρ + h ω [P] ρθ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7cqGHRaWkdaWcaaqaaiaadEgaaeaacqaHjpWDaaGa aG4waiaajcfacaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGccq GHRaWkdaWcaaqaaiaadIgaaeaacqaHjpWDaaGaaG4waiaajcfacaaI DbWaaWbaaSqabeaacqaHbpGCcqaH4oqCaaGccaaISaaaaa@6BDE@

             ζ =[P ] ,θ ζθ + [P] ,ζ ζζ + [P] ,ρ ζρ + d+h ω [P] ζρ + e+j ω [P] ζθ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacqaH2oGEaaGccaaI9aGaaG4waiaajcfacaaIDbWaa0baaSqaaiaa iYcacqaH4oqCaeaacqaH2oGEcqaH4oqCaaGccqGHRaWkcaaIBbGaaK iuaiaai2fadaqhaaWcbaGaaGilaiabeA7a6bqaaiabeA7a6jabeA7a 6baakiabgUcaRiaaiUfacaqIqbGaaGyxamaaDaaaleaacaaISaGaeq yWdihabaGaeqOTdONaeqyWdihaaOGaey4kaSYaaSaaaeaacaWGKbGa ey4kaSIaamiAaaqaaiabeM8a3baacaaIBbGaaKiuaiaai2fadaahaa WcbeqaaiabeA7a6jabeg8aYbaakiabgUcaRmaalaaabaGaamyzaiab gUcaRiaadQgaaeaacqaHjpWDaaGaaG4waiaajcfacaaIDbWaaWbaaS qabeaacqaH2oGEcqaH4oqCaaGccaaIUaaaaa@6F34@

 

С целью выделить нелинейную часть отдельным слагаемым, запишем уравнение баланса (31) в терминах тензора напряжений Пиола второго рода S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uaaaa@38E5@ , который связан с полем P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiuaaaa@38E2@  соотношением (29). При этом уравнение (31) примет вид

                                                                LS+f=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaMi8UaaK4u aiabgUcaRiaajAgacaaI9aGaaCimaiaaiYcaaaa@490D@                                                                    (32)

 где L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaMi8oaaa@4426@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  линейный дифференциальный оператор, действующий на поле S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uaaaa@38E5@  по закону

                                                              LS=di v R (FS). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaMi8UaaK4u aiaai2dacaWGKbGaamyAaiaadAhadaWgaaWcbaGaamOuaaqabaGcca aIOaGaaKOraiaaygW7cqGHflY1caaMb8UaaK4uaiaaiMcacaaIUaaa aa@52D4@

 Далее, согласно равенству (25) и линейности операции дивергенции, справедлива следующая выкладка:

             LS=di v R ((I+u)S) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectcaaMi8UaaK4u aiaai2dacaWGKbGaamyAaiaadAhadaWgaaWcbaGaamOuaaqabaGcca aIOaGaaGikaiaajMeacqGHRaWkcqGHhis0caqI1bGaaGykaiaajofa caaIPaaaaa@518E@

             =di v R S+di v R (uS) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaads gacaWGPbGaamODamaaBaaaleaacaWGsbaabeaakiaajofacqGHRaWk caWGKbGaamyAaiaadAhadaWgaaWcbaGaamOuaaqabaGccaaIOaGaey 4bIeTaaKyDaiaajofacaaIPaaaaa@4715@

             =di v R S+AS, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaads gacaWGPbGaamODamaaBaaaleaacaWGsbaabeaakiaajofacqGHRaWk tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=bq8bj aayIW7caqItbGaaGilaaaa@4CD3@

 где полагаем

                                                             AS:=di v R (uS). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8UaaK4u aiaaiQdacaaI9aGaamizaiaadMgacaWG2bWaaSbaaSqaaiaadkfaae qaaOGaaGikaiabgEGirlaajwhacaqItbGaaGykaiaai6caaaa@50A2@                                                                  (33)

 Операторы di v R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadM gacaWG2bWaaSbaaSqaaiaadkfaaeqaaaaa@3BDC@  и A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8oaaa@44D9@  линейны относительно компонент тензора Пиола второго рода. Вместе с тем если принять во внимание, что напряжения в действительности зависят от перемещений, то, поскольку коэффициенты остатка A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8oaaa@44D9@  также зависят от перемещений, оператор A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8oaaa@44D9@  относительно последних оказываются нелинейным. Условно можно сказать, что (33) характеризует <<геометрическую нелинейность>> упругой системы. Он имеет следующий вид:

             AS= ([S ] ,β ωβ + [S] ,3 ω3 )[β ] ασ g σω +([S ] ,β ω3 + [S] ,3 33 )[β ] α3 + [S] ωβ (([β ] ασ g σω ) ,β + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8UaaK4u aiaai2dadaWabaqaaiaaiIcacaaIBbGaaK4uaiaai2fadaqhaaWcba GaaGilaiabek7aIbqaaiabeM8a3jabek7aIbaakiabgUcaRiaaiUfa caqItbGaaGyxamaaDaaaleaacaaISaGaaG4maaqaaiabeM8a3jaaio daaaGccaaIPaGaaG4waGGadiab+j7aIjaai2fadaahaaWcbeqaaiab eg7aHjabeo8aZbaakiaadEgadaWgaaWcbaGaeq4WdmNaeqyYdChabe aakiabgUcaRiaaiIcacaaIBbGaaK4uaiaai2fadaqhaaWcbaGaaGil aiabek7aIbqaaiabeM8a3jaaiodaaaGccqGHRaWkcaaIBbGaaK4uai aai2fadaqhaaWcbaGaaGilaiaaiodaaeaacaaIZaGaaG4maaaakiaa iMcacaaIBbGae4NSdiMaaGyxamaaCaaaleqabaGaeqySdeMaaG4maa aakiabgUcaRiaaiUfacaqItbGaaGyxamaaCaaaleqabaGaeqyYdCNa eqOSdigaaOGaaGikaiaaiIcacaaIBbGae4NSdiMaaGyxamaaCaaale qabaGaeqySdeMaeq4WdmhaaOGaam4zamaaBaaaleaacqaHdpWCcqaH jpWDaeqaaOGaaGykamaaBaaaleaacaaISaGaeqOSdigabeaakiabgU caRaGaay5waaaaaa@941F@

                                    + [β] γσ g σω Γ γβ α + [β] ασ g σω Γ βγ γ )+ [S] ω3 ([β ] ,3 α3 + g σω [β] ,3 ασ + [β] γ3 Γ γω α + [β] α3 Γ ωγ γ )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG 4waGGadiab=j7aIjaai2fadaahaaWcbeqaaiabeo7aNjabeo8aZbaa kiaadEgadaWgaaWcbaGaeq4WdmNaeqyYdChabeaakiabfo5ahnaaDa aaleaacqaHZoWzcqaHYoGyaeaacqaHXoqyaaGccqGHRaWkcaaIBbGa e8NSdiMaaGyxamaaCaaaleqabaGaeqySdeMaeq4WdmhaaOGaam4zam aaBaaaleaacqaHdpWCcqaHjpWDaeqaaOGaeu4KdC0aa0baaSqaaiab ek7aIjabeo7aNbqaaiabeo7aNbaakiaaiMcacqGHRaWkcaaIBbGaaK 4uaiaai2fadaahaaWcbeqaaiabeM8a3jaaiodaaaGccaaIOaGaaG4w aiab=j7aIjaai2fadaqhaaWcbaGaaGilaiaaiodaaeaacqaHXoqyca aIZaaaaOGaey4kaSIaam4zamaaBaaaleaacqaHdpWCcqaHjpWDaeqa aOGaaG4waiab=j7aIjaai2fadaqhaaWcbaGaaGilaiaaiodaaeaacq aHXoqycqaHdpWCaaGccqGHRaWkcaaIBbGae8NSdiMaaGyxamaaCaaa leqabaGaeq4SdCMaaG4maaaakiabfo5ahnaaDaaaleaacqaHZoWzcq aHjpWDaeaacqaHXoqyaaGccqGHRaWkcaaIBbGae8NSdiMaaGyxamaa CaaaleqabaGaeqySdeMaaG4maaaakiabfo5ahnaaDaaaleaacqaHjp WDcqaHZoWzaeaacqaHZoWzaaGccaaIPaGaey4kaScaaa@9845@

                                       + [S] 33 [β] ,3 α3 e α + [S] ωβ (([β ] 3σ g σω ) ,β + [β] 3σ g σω Γ βγ γ )+ [S] ω3 g σω [β] ,3 3σ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacq GHRaWkcaaIBbGaaK4uaiaai2fadaahaaWcbeqaaiaaiodacaaIZaaa aOGaaG4waGGadiab=j7aIjaai2fadaqhaaWcbaGaaGilaiaaiodaae aacqaHXoqycaaIZaaaaaGccaGLDbaacaqILbWaaSbaaSqaaiabeg7a HbqabaGccqGHRaWkdaWabaqaaiaaiUfacaqItbGaaGyxamaaCaaale qabaGaeqyYdCNaeqOSdigaaOGaaGikaiaaiIcacaaIBbGae8NSdiMa aGyxamaaCaaaleqabaGaaG4maiabeo8aZbaakiaadEgadaWgaaWcba Gaeq4WdmNaeqyYdChabeaakiaaiMcadaWgaaWcbaGaaGilaiabek7a IbqabaGccqGHRaWkcaaIBbGae8NSdiMaaGyxamaaCaaaleqabaGaaG 4maiabeo8aZbaakiaadEgadaWgaaWcbaGaeq4WdmNaeqyYdChabeaa kiabfo5ahnaaDaaaleaacqaHYoGycqaHZoWzaeaacqaHZoWzaaGcca aIPaGaey4kaSIaaG4waiaajofacaaIDbWaaWbaaSqabeaacqaHjpWD caaIZaaaaOGaam4zamaaBaaaleaacqaHdpWCcqaHjpWDaeqaaOGaaG 4waiab=j7aIjaai2fadaqhaaWcbaGaaGilaiaaiodaaeaacaaIZaGa eq4WdmhaaOGaey4kaScacaGLBbaaaaa@868A@

                                                      + [S] β ωβ [β] 3σ g σω + [S] ,3 ω3 g σω [β] 3σ k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacq GHRaWkcaaIBbGaaK4uaiaai2fadaqhaaWcbaGaeqOSdigabaGaeqyY dCNaeqOSdigaaOGaaG4waGGadiab=j7aIjaai2fadaahaaWcbeqaai aaiodacqaHdpWCaaGccaWGNbWaaSbaaSqaaiabeo8aZjabeM8a3bqa baGccqGHRaWkcaaIBbGaaK4uaiaai2fadaqhaaWcbaGaaGilaiaaio daaeaacqaHjpWDcaaIZaaaaOGaam4zamaaBaaaleaacqaHdpWCcqaH jpWDaeqaaOGaaG4waiab=j7aIjaai2fadaahaaWcbeqaaiaaiodacq aHdpWCaaaakiaaw2faaiaajUgacaaIUaaaaa@60F4@                                                           (34)

  

3.4 Меры деформаций

 Принимая во внимание рассуждения раздела 3.2, в качестве меры деформаций пластины выберем тензор Грина-Венана (30). В силу соотношения (25) между градиентом деформации и градиентом перемещений удобно представить меру деформаций в виде разложения на линейную (относительно градиента перемещений β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8NSdi gaaa@39B0@  ) и нелинейную части:

                                                                E=ε+ϵ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrcaaI9aaccmGa e4xTduMaey4kaSYefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUv gaiyWacqqF1pG8caaISaaaaa@53F1@

где ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xTdu gaaa@39B6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  тензор малых деформаций, определенный равенством

                                                              ε= 1 2 β+ β T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xTdu MaaGypamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacqWFYoGy cqGHRaWkcqWFYoGydaahaaWcbeqaaiaabsfaaaaakiaawIcacaGLPa aacaaISaaaaa@436B@

а ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8aaa@4403@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  нелинейная добавка:

                                                                ϵ= 1 2 β T β. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8caaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaaiiWacqGFYoGydaahaaWcbeqaaiaabs faaaGccqGFYoGycaaIUaaaaa@4B5A@

Выбор такой аддитивной декомпозиции тензора Грина-Венана влечет декомпозицию дивергентной части уравнения равновесия на терм, линейный по перемещениям, и нелинейный терм, что позволит сформулировать соответствующий итерационный алгоритм для решения краевой задачи.

В компонентах тензор малых деформаций имеет разложение

             ε= 1 2 ( u β ζ g βϰ w ,ϰ ) ,α g αδ + ( u δ ζ g δϰ w ,ϰ ) ,α g αβ +( u γ ζ g γϰ w ,ϰ )( Γ γα β g αδ + Γ γα δ g αβ ) e β e δ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xTdu MaaGypamaalaaabaGaaGymaaqaaiaaikdaaaWaamWaaeaacaaIOaWa aCbiaeaacaWG1baaleqabaGaeSigI8gaaOWaaWbaaSqabeaacqaHYo GyaaGccqGHsislcqaH2oGEcaWGNbWaaWbaaSqabeaacqaHYoGytuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab+b=a5daakm aaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBaaaleaacaaISaGa e4h8dKpabeaakiaaiMcadaWgaaWcbaGaaGilaiabeg7aHbqabaGcca WGNbWaaWbaaSqabeaacqaHXoqycqaH0oazaaGccqGHRaWkcaaIOaWa aCbiaeaacaWG1baaleqabaGaeSigI8gaaOWaaWbaaSqabeaacqaH0o azaaGccqGHsislcqaH2oGEcaWGNbWaaWbaaSqabeaacqaH0oazcqGF Wpq+aaGcdaWfGaqaaiaadEhaaSqabeaacqWIyiYBaaGcdaWgaaWcba GaaGilaiab+b=a5dqabaGccaaIPaWaaSbaaSqaaiaaiYcacqaHXoqy aeqaaOGaam4zamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaey4kaS IaaGikamaaxacabaGaamyDaaWcbeqaaiablIHiVbaakmaaCaaaleqa baGaeq4SdCgaaOGaeyOeI0IaeqOTdONaam4zamaaCaaaleqabaGaeq 4SdCMae4h8dKpaaOWaaCbiaeaacaWG3baaleqabaGaeSigI8gaaOWa aSbaaSqaaiaaiYcacqGFWpq+aeqaaOGaaGykaiaaiIcacqqHtoWrda qhaaWcbaGaeq4SdCMaeqySdegabaGaeqOSdigaaOGaam4zamaaCaaa leqabaGaeqySdeMaeqiTdqgaaOGaey4kaSIaeu4KdC0aa0baaSqaai abeo7aNjabeg7aHbqaaiabes7aKbaakiaadEgadaahaaWcbeqaaiab eg7aHjabek7aIbaakiaaiMcaaiaawUfacaGLDbaacaqILbWaaSbaaS qaaiabek7aIbqabaGccqGHxkcXcaqILbWaaSbaaSqaaiabes7aKbqa baGccaaIUaaaaa@B243@

 Далее, раскрывая определение операции транспонирования, приходим к следующей формуле для нелинейного терма:

             ϵ= 1 2 ([β ] αβ [β] μη g αμ + [β] 3β [β] 3η ) e β e η + [β] αβ [β] μ3 g αμ ( e β k+k e β )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8caaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaadaWabaqaaiaaiIcacaaIBbaccmGae4 NSdiMaaGyxamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaaG4waiab +j7aIjaai2fadaahaaWcbeqaaiabeY7aTjabeE7aObaakiaadEgada WgaaWcbaGaeqySdeMaeqiVd0gabeaakiabgUcaRiaaiUfacqGFYoGy caaIDbWaaWbaaSqabeaacaaIZaGaeqOSdigaaOGaaG4waiab+j7aIj aai2fadaahaaWcbeqaaiaaiodacqaH3oaAaaGccaaIPaGaaKyzamaa BaaaleaacqaHYoGyaeqaaOGaey4LIqSaaKyzamaaBaaaleaacqaH3o aAaeqaaOGaey4kaSIaaG4waiab+j7aIjaai2fadaahaaWcbeqaaiab eg7aHjabek7aIbaakiaaiUfacqGFYoGycaaIDbWaaWbaaSqabeaacq aH8oqBcaaIZaaaaOGaam4zamaaBaaaleaacqaHXoqycqaH8oqBaeqa aOGaaGikaiaajwgadaWgaaWcbaGaeqOSdigabeaakiabgEPielaajU gacqGHRaWkcaqIRbGaey4LIqSaaKyzamaaBaaaleaacqaHYoGyaeqa aOGaaGykaiabgUcaRaGaay5waaaaaa@9097@

                                                           + [β] α3 [β] μ3 g αμ kk . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacq GHRaWkcaaIBbaccmGae8NSdiMaaGyxamaaCaaaleqabaGaeqySdeMa aG4maaaakiaaiUfacqWFYoGycaaIDbWaaWbaaSqabeaacqaH8oqBca aIZaaaaOGaam4zamaaBaaaleaacqaHXoqycqaH8oqBaeqaaOGaaK4A aiabgEPielaajUgaaiaaw2faaiaai6caaaa@4F25@

 Наконец, в силу (24) получаем

             ϵ= 1 2 ( u α ζ g αϰ w ,ϰ ) ,σ +( u γ ζ g γϰ w ,ϰ ) Γ γσ α g σβ × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8caaI9aWaaSaa aeaacaaIXaaabaGaaGOmaaaadaGabaqaamaaceaabaWaamWaaeaaca aIOaWaaCbiaeaacaWG1baaleqabaGaeSigI8gaaOWaaWbaaSqabeaa cqaHXoqyaaGccqGHsislcqaH2oGEcaWGNbWaaWbaaSqabeaacqaHXo qyiuGacqGFWpq+aaGcdaWfGaqaaiaadEhaaSqabeaacqWIyiYBaaGc daWgaaWcbaGaaGilaiab+b=a5dqabaGccaaIPaWaaSbaaSqaaiaaiY cacqaHdpWCaeqaaOGaey4kaSIaaGikamaaxacabaGaamyDaaWcbeqa aiablIHiVbaakmaaCaaaleqabaGaeq4SdCgaaOGaeyOeI0IaeqOTdO Naam4zamaaCaaaleqabaGaeq4SdCMae4h8dKpaaOWaaCbiaeaacaWG 3baaleqabaGaeSigI8gaaOWaaSbaaSqaaiaaiYcacqGFWpq+aeqaaO GaaGykaiabfo5ahnaaDaaaleaacqaHZoWzcqaHdpWCaeaacqaHXoqy aaaakiaawUfacaGLDbaacaWGNbWaaWbaaSqabeaacqaHdpWCcqaHYo GyaaGccqGHxdaTaiaawUhaaaGaay5Eaaaaaa@8273@

                                     × ( u μ ζ g μω w ,ω ) ,π +( u ξ ζ g ξω w ,ω ) Γ ξπ μ g πη g αμ + w ,γ g γβ w ,α g αη e β e η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacq GHxdaTdaWadaqaaiaaiIcadaWfGaqaaiaadwhaaSqabeaacqWIyiYB aaGcdaahaaWcbeqaaiabeY7aTbaakiabgkHiTiabeA7a6jaadEgada ahaaWcbeqaaiabeY7aTjabeM8a3baakmaaxacabaGaam4DaaWcbeqa aiablIHiVbaakmaaBaaaleaacaaISaGaeqyYdChabeaakiaaiMcada WgaaWcbaGaaGilaiabec8aWbqabaGccqGHRaWkcaaIOaWaaCbiaeaa caWG1baaleqabaGaeSigI8gaaOWaaWbaaSqabeaacqaH+oaEaaGccq GHsislcqaH2oGEcaWGNbWaaWbaaSqabeaacqaH+oaEcqaHjpWDaaGc daWfGaqaaiaadEhaaSqabeaacqWIyiYBaaGcdaWgaaWcbaGaaGilai abeM8a3bqabaGccaaIPaGaeu4KdC0aa0baaSqaaiabe67a4jabec8a WbqaaiabeY7aTbaaaOGaay5waiaaw2faaiaadEgadaahaaWcbeqaai abec8aWjabeE7aObaakiaadEgadaWgaaWcbaGaeqySdeMaeqiVd0ga beaakiabgUcaRmaaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBa aaleaacaaISaGaeq4SdCgabeaakiaadEgadaahaaWcbeqaaiabeo7a Njabek7aIbaakmaaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBa aaleaacaaISaGaeqySdegabeaakiaadEgadaahaaWcbeqaaiabeg7a HjabeE7aObaaaOGaayzFaaGaaKyzamaaBaaaleaacqaHYoGyaeqaaO Gaey4LIqSaaKyzamaaBaaaleaacqaH3oaAaeqaaOGaeyOeI0caaa@91FA@

                                        ( u α ζ g αϰ w ,ϰ ) ,σ +( u γ ζ g γϰ w ,ϰ ) Γ γσ α g σβ w ,α ( e β k+k e β )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaam WaaeaacaaIOaWaaCbiaeaacaWG1baaleqabaGaeSigI8gaaOWaaWba aSqabeaacqaHXoqyaaGccqGHsislcqaH2oGEcaWGNbWaaWbaaSqabe aacqaHXoqytuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb ciab=b=a5daakmaaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBa aaleaacaaISaGae8h8dKpabeaakiaaiMcadaWgaaWcbaGaaGilaiab eo8aZbqabaGccqGHRaWkcaaIOaWaaCbiaeaacaWG1baaleqabaGaeS igI8gaaOWaaWbaaSqabeaacqaHZoWzaaGccqGHsislcqaH2oGEcaWG NbWaaWbaaSqabeaacqaHZoWzcqWFWpq+aaGcdaWfGaqaaiaadEhaaS qabeaacqWIyiYBaaGcdaWgaaWcbaGaaGilaiab=b=a5dqabaGccaaI PaGaeu4KdC0aa0baaSqaaiabeo7aNjabeo8aZbqaaiabeg7aHbaaaO Gaay5waiaaw2faaiaadEgadaahaaWcbeqaaiabeo8aZjabek7aIbaa kmaaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBaaaleaacaaISa GaeqySdegabeaakiaaiIcacaqILbWaaSbaaSqaaiabek7aIbqabaGc cqGHxkcXcaqIRbGaey4kaSIaaK4AaiabgEPielaajwgadaWgaaWcba GaeqOSdigabeaakiaaiMcacqGHRaWkaaa@8E15@

                                                            + w ,ϰ w ,α g αϰ kk . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacq GHRaWkdaWfGaqaaiaadEhaaSqabeaacqWIyiYBaaGcdaWgaaWcbaGa aGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8 h8dKpabeaakmaaxacabaGaam4DaaWcbeqaaiablIHiVbaakmaaBaaa leaacaaISaGaeqySdegabeaakiaadEgadaahaaWcbeqaaiabeg7aHj ab=b=a5daakiaajUgacqGHxkcXcaqIRbaacaGL9baacaaIUaaaaa@586C@                                                                (35)

 Полученные разложения для ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGae8xTdu gaaa@39B6@  и ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8aaa@4403@  в совокупности определяют диадное разложение для поля E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFraaa@43E8@ .

3.5 Закон состояния

В настоящей работе материал пластины предполагается простым и гиперупругим. Будем использовать потенциал Сен-Венана, определяемый выражением

                                                           W= λ 2 I:E 2 +μE : E, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dadaWcaaqaaiabeU7aSbqaaiaaikdaaaWaaeWaaeaacaqIjbGaaGza VlaaiQdacaaMb8+efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuaacqWFecFraiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcqaH8oqBcqWFecFrcqWFGaaicaaMb8UaaGOoaiaaygW7cq WFGaaicqWFecFrcaaISaaaaa@5C5F@                                                                (36)

 в котором λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@39BB@  и μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  материальные константы, аналогичные константам Ламе, применяемым в линейной теории упругости для изотропного тела. Потенциалу (36) в силу формулы Дойля Truesdell2004 соответствует закон состояния, линейно связывающий тензор деформации E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFraaa@43E8@  с вторым тензором напряжений Пиола S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uaaaa@38E5@ :

                                                           S=λII: E+2μE. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uaiaai2 dacqaH7oaBcaaMi8UaaKysaiabgEPielaajMeacaaI6aGaaGzaVprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hiaaIae8 hHWxKaey4kaSIaaGOmaiabeY7aTjaayIW7cqWFecFrcaaIUaaaaa@5771@                                                                (37)

 Именно линейность закона состояния и служила мотивацией для выбора тензора Пиола второго рода в качестве меры напряженного состояния.

 3.6 Осреднение уравнений баланса

 Для получения двумерных уравнений равновесия, которые чаще всего используются при моделировании полей в пластинах и оболочках, следует произвести осреднение уравнений равновесия (32) по толщине пластины, что сводится к вычислению моментов (в математическом смысле) левых и правых частей этих уравнений по переменной ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdOhaaa@39C4@  в пределах ( h , h + ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI gadaWgaaWcbaGaeyOeI0cabeaakiaaiYcacaaMc8UaamiAamaaBaaa leaacqGHRaWkaeqaaOGaaGykaaaa@3FC2@ . Интегрирование (32) с весом 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  приводит к уравнениям:

             [T] ,θ ρθ + [T] ,ζ ρζ + [T] ,ρ ρρ + 2d+h ω [T] ρρ + 2e+j ω [T] ρθ + e ω [T] θρ + f ω [T] θθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFtapvcaaI DbWaa0baaSqaaiaaiYcacqaH4oqCaeaacqaHbpGCcqaH4oqCaaGccq GHRaWkcaaIBbGae83eWtLaaGyxamaaDaaaleaacaaISaGaeqOTdOha baGaeqyWdiNaeqOTdOhaaOGaey4kaSIaaG4waiab=nb8ujaai2fada qhaaWcbaGaaGilaiabeg8aYbqaaiabeg8aYjabeg8aYbaakiabgUca RmaalaaabaGaaGOmaiaadsgacqGHRaWkcaWGObaabaGaeqyYdChaai aaiUfacqWFtapvcaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGc cqGHRaWkdaWcaaqaaiaaikdacaWGLbGaey4kaSIaamOAaaqaaiabeM 8a3baacaaIBbGae83eWtLaaGyxamaaCaaaleqabaGaeqyWdiNaeqiU dehaaOGaey4kaSYaaSaaaeaacaWGLbaabaGaeqyYdChaaiaaiUfacq WFtapvcaaIDbWaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGccqGHRaWk daWcaaqaaiaadAgaaeaacqaHjpWDaaGaaG4waiab=nb8ujaai2fada ahaaWcbeqaaiabeI7aXjabeI7aXbaakiabgUcaRaaa@93E3@

             + ρ + [O] ρ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 cqGHRaWktuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfa Gae8xlHm0aaWbaaSqabeaacqaHbpGCaaGccqGHRaWkcaaIBbGae8Nd W=KaaGyxamaaCaaaleqabaGaeqyWdihaaOGaaGypaiaaicdacaaISa aaaa@77D1@

             [T] ,θ θθ + [T] ,ζ θζ + [T] ,ρ θρ + d+2h ω [T] θρ + e+2j ω [T] θθ + g ω [T] ρρ + h ω [T] ρθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFtapvcaaI DbWaa0baaSqaaiaaiYcacqaH4oqCaeaacqaH4oqCcqaH4oqCaaGccq GHRaWkcaaIBbGae83eWtLaaGyxamaaDaaaleaacaaISaGaeqOTdOha baGaeqiUdeNaeqOTdOhaaOGaey4kaSIaaG4waiab=nb8ujaai2fada qhaaWcbaGaaGilaiabeg8aYbqaaiabeI7aXjabeg8aYbaakiabgUca RmaalaaabaGaamizaiabgUcaRiaaikdacaWGObaabaGaeqyYdChaai aaiUfacqWFtapvcaaIDbWaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGc cqGHRaWkdaWcaaqaaiaadwgacqGHRaWkcaaIYaGaamOAaaqaaiabeM 8a3baacaaIBbGae83eWtLaaGyxamaaCaaaleqabaGaeqiUdeNaeqiU dehaaOGaey4kaSYaaSaaaeaacaWGNbaabaGaeqyYdChaaiaaiUfacq WFtapvcaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGccqGHRaWk daWcaaqaaiaadIgaaeaacqaHjpWDaaGaaG4waiab=nb8ujaai2fada ahaaWcbeqaaiabeg8aYjabeI7aXbaakiabgUcaRaaa@93C9@

             + θ + [O] θ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 cqGHRaWktuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfa Gae8xlHm0aaWbaaSqabeaacqaH4oqCaaGccqGHRaWkcaaIBbGae8Nd W=KaaGyxamaaCaaaleqabaGaeqiUdehaaOGaaGypaiaaicdacaaISa aaaa@77BD@

             [T] ,θ ζθ + [T] ,ζ ζζ + [T] ,ρ ζρ + d+h ω [T] ζρ + e+j ω [T] ζθ + ζ + [O] ζ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFtapvcaaI DbWaa0baaSqaaiaaiYcacqaH4oqCaeaacqaH2oGEcqaH4oqCaaGccq GHRaWkcaaIBbGae83eWtLaaGyxamaaDaaaleaacaaISaGaeqOTdOha baGaeqOTdONaeqOTdOhaaOGaey4kaSIaaG4waiab=nb8ujaai2fada qhaaWcbaGaaGilaiabeg8aYbqaaiabeA7a6jabeg8aYbaakiabgUca RmaalaaabaGaamizaiabgUcaRiaadIgaaeaacqaHjpWDaaGaaG4wai ab=nb8ujaai2fadaahaaWcbeqaaiabeA7a6jabeg8aYbaakiabgUca RmaalaaabaGaamyzaiabgUcaRiaadQgaaeaacqaHjpWDaaGaaG4wai ab=nb8ujaai2fadaahaaWcbeqaaiabeA7a6jabeI7aXbaakiabgUca Riab=1sidnaaCaaaleqabaGaeqOTdOhaaOGaey4kaSIaaG4waiab=5 a8pjaai2fadaahaaWcbeqaaiabeA7a6baakiaai2dacaaIWaGaaGil aaaa@881E@

 а интегрирование первых двух уравнений (32) с весом ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdOhaaa@39C4@  дает

             [M] ,θ ρθ + [M] ,ζ ρζ + [M] ,ρ ρρ + 2d+h ω [M] ρρ + 2e+j ω [M] ρθ + e ω [M] θρ + f ω [M] θθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFmaFtcaaI DbWaa0baaSqaaiaaiYcacqaH4oqCaeaacqaHbpGCcqaH4oqCaaGccq GHRaWkcaaIBbGae8hdW3KaaGyxamaaDaaaleaacaaISaGaeqOTdOha baGaeqyWdiNaeqOTdOhaaOGaey4kaSIaaG4waiab=Xa8njaai2fada qhaaWcbaGaaGilaiabeg8aYbqaaiabeg8aYjabeg8aYbaakiabgUca RmaalaaabaGaaGOmaiaadsgacqGHRaWkcaWGObaabaGaeqyYdChaai aaiUfacqWFmaFtcaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGc cqGHRaWkdaWcaaqaaiaaikdacaWGLbGaey4kaSIaamOAaaqaaiabeM 8a3baacaaIBbGae8hdW3KaaGyxamaaCaaaleqabaGaeqyWdiNaeqiU dehaaOGaey4kaSYaaSaaaeaacaWGLbaabaGaeqyYdChaaiaaiUfacq WFmaFtcaaIDbWaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGccqGHRaWk daWcaaqaaiaadAgaaeaacqaHjpWDaaGaaG4waiab=Xa8njaai2fada ahaaWcbeqaaiabeI7aXjabeI7aXbaakiabgUcaRaaa@9381@

             + E ρ + [O] ρ =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 cqGHRaWktuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfa Gae8hbWx0aaWbaaSqabeaacqaHbpGCaaGccqGHRaWkcaaIBbGae8Nd W=KaaGyxamaaCaaaleqabaGaeqyWdihaaOGaaGypaiaaicdacaaISa aaaa@7879@

             [T] ,θ θθ + [M] ,ζ θζ + [M] ,ρ θρ + d+2h ω [M] θρ + e+2j ω [M] θθ + g ω [M] ρρ + h ω [M] ρθ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFtapvcaaI DbWaa0baaSqaaiaaiYcacqaH4oqCaeaacqaH4oqCcqaH4oqCaaGccq GHRaWkcaaIBbGae8hdW3KaaGyxamaaDaaaleaacaaISaGaeqOTdOha baGaeqiUdeNaeqOTdOhaaOGaey4kaSIaaG4waiab=Xa8njaai2fada qhaaWcbaGaaGilaiabeg8aYbqaaiabeI7aXjabeg8aYbaakiabgUca RmaalaaabaGaamizaiabgUcaRiaaikdacaWGObaabaGaeqyYdChaai aaiUfacqWFmaFtcaaIDbWaaWbaaSqabeaacqaH4oqCcqaHbpGCaaGc cqGHRaWkdaWcaaqaaiaadwgacqGHRaWkcaaIYaGaamOAaaqaaiabeM 8a3baacaaIBbGae8hdW3KaaGyxamaaCaaaleqabaGaeqiUdeNaeqiU dehaaOGaey4kaSYaaSaaaeaacaWGNbaabaGaeqyYdChaaiaaiUfacq WFmaFtcaaIDbWaaWbaaSqabeaacqaHbpGCcqaHbpGCaaGccqGHRaWk daWcaaqaaiaadIgaaeaacqaHjpWDaaGaaG4waiab=Xa8njaai2fada ahaaWcbeqaaiabeg8aYjabeI7aXbaakiabgUcaRaaa@9375@

             + E θ + [O] θ =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 cqGHRaWktuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfa Gae8hbWx0aaWbaaSqabeaacqaH4oqCaaGccqGHRaWkcaaIBbGae8Nd W=KaaGyxamaaCaaaleqabaGaeqiUdehaaOGaaGypaiaaicdacaaIUa aaaa@7867@

 Здесь

                                             T= h h + Sdζ,M= h h + Sζdζ,O= h h + fdζ,Q= h h + fζdζ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=nb8ujaai2dadaWd XbqabSqaaiaadIgadaWgaaqaaiabgkHiTaqabaaabaGaamiAamaaBa aabaGaey4kaScabeaaa0Gaey4kIipakiaajofacaaMi8Uaamizaiab eA7a6jaaiYcacaaMf8Uae8hdW3KaaGypamaapehabeWcbaGaamiAam aaBaaabaGaeyOeI0cabeaaaeaacaWGObWaaSbaaeaacqGHRaWkaeqa aaqdcqGHRiI8aOGaaK4uaiaayIW7cqaH2oGEcaaMi8UaamizaiabeA 7a6jaaiYcacaaMf8Uae8NdW=KaaGypamaapehabeWcbaGaamiAamaa BaaabaGaeyOeI0cabeaaaeaacaWGObWaaSbaaeaacqGHRaWkaeqaaa qdcqGHRiI8aOGaaKOzaiaayIW7caWGKbGaeqOTdONaaGilaiaaywW7 cqWFqaFucaaI9aWaa8qCaeqaleaacaWGObWaaSbaaeaacqGHsislae qaaaqaaiaadIgadaWgaaqaaiabgUcaRaqabaaaniabgUIiYdGccaqI MbGaaGjcVlabeA7a6jaayIW7caWGKbGaeqOTdONaaGilaaaa@894A@

 а ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=1sidnaaCaaaleqa baGaeqyWdihaaaaa@45CB@ , θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=1sidnaaCaaaleqa baGaeqiUdehaaaaa@45C1@ , E ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=ra8fnaaCaaaleqa baGaeqyWdihaaaaa@4673@ , E θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=ra8fnaaCaaaleqa baGaeqiUdehaaaaa@4669@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  соответствующие интегралы от выражений, определяемых оператором A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFaeFqcaaMi8oaaa@44D9@  (34) (характеризующим <<геометрическую нелинейность>>) и слагаемыми, входящими в закон состояния с <<физически нелинейным>> термом ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuWacqWF1pG8aaa@4403@  (35). 

4 Несовместные деформации в пластине

4.1 Мультипликативная декомпозиция

До сих пор ничего не утверждалось о несовместности локальных деформаций в пластине, и все рассуждения, связанные с формулировкой уравнений баланса, в равной степени применимы как к случаю, когда форма S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  является натуральной, так и к случаю, когда она самонапряжена. Вместе с тем в последнем случае соображения раздела 3.5 должны быть подвергнуты корректировке, поскольку упругий потенциал W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@38E3@  (36) отсчитывается от натурального состояния. В соответствии с общими положениями континуальной теории дефектов, эту корректировку можно произвести следующим образом. Пусть { γ (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaCaaaleqabaGaaGikaiaadIfacaaIPaaaaOGaaGyFamaaBaaa leaacaWGybGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuaacqWFse=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D1D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  семейство локально натуральных деформаций γ (X) : S R S (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaW baaSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaI6aGaaGPaVprr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXp1aaSbaaS qaaiaadkfaaeqaaOGaeyOKH4Qae8NeXp1aaWbaaSqabeaacaaIOaGa amiwaiaaiMcaaaaaaa@511F@ , для которого выполнено свойство (8) (см. раздел 1.3). Если S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@436C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  некоторая актуальная форма, а γ: S R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OoaiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jr8tnaaBaaaleaacaWGsbaabeaakiabgkziUkab=jr8tbaa@4C37@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  соответствующая деформация, то приходим к композиции

                                                        γ 0 (X) :=γ ( γ (X) ) 1 : S (X) S, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aa0 baaSqaaiaaicdaaeaacaaIOaGaamiwaiaaiMcaaaGccaaI6aGaaGyp aiabeo7aNjablIHiVjaaiIcacqaHZoWzdaahaaWcbeqaaiaaiIcaca WGybGaaGykaaaakiaaiMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaI6aGaaGPaVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae8NeXp1aaWbaaSqabeaacaaIOaGaamiwaiaaiMcaaaGccqGH sgIRcqWFse=ucaaISaaaaa@5D5C@                                                             (38)

 которая является деформацией, переводящей инфинитезимальную окрестность точки X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@  из натурального состояния в актуальное. Действие деформации γ 0 (X) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aa0 baaSqaaiaaicdaaeaacaaIOaGaamiwaiaaiMcaaaaaaa@3CD7@  иллюстрируется следующей диаграммой:

 

 

В инфинитезимальном приближении равенству (38) отвечает соотношение между градиентами:

                                                         D Y γ 0 (X) := D Y γ D Y ( γ (X) ) 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGzbaabeaakiabeo7aNnaaDaaaleaacaaIWaaabaGaaGik aiaadIfacaaIPaaaaOGaaGOoaiaai2dacaWGebWaaSbaaSqaaiaadM faaeqaaOGaeq4SdCMaeSigI8MaamiramaaBaaaleaacaWGzbaabeaa kiaaiIcacqaHZoWzdaahaaWcbeqaaiaaiIcacaWGybGaaGykaaaaki aaiMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaISaaaaa@4EFE@

рассматриваемое в точке Y S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne Xp1aaSbaaSqaaiaadkfaaeqaaaaa@46D1@ . Вводя теперь локальную деформацию H X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisamaaBa aaleaacaWGybaabeaaaaa@39E3@  в соответствии с формулой (9) и полную локальную дисторсию F X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaDa aaleaacaWGybaabaGaey4fIOcaaaaa@3AD1@  как

                                                             F X := D Y γ 0 (X) | Y=X , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaDa aaleaacaWGybaabaGaey4fIOcaaOGaaGOoaiaai2dacaWGebWaaSba aSqaaiaadMfaaeqaaOGaeq4SdC2aa0baaSqaaiaaicdaaeaacaaIOa GaamiwaiaaiMcaaaGccaaI8bWaaSbaaSqaaiaadMfacaaI9aGaamiw aaqabaGccaaISaaaaa@4791@

приходим к равенству

                                                               F X = F X H X 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaDa aaleaacaWGybaabaGaey4fIOcaaOGaaGypaiaajAeadaWgaaWcbaGa amiwaaqabaGccaqIibWaa0baaSqaaiaadIfaaeaacqGHsislcaaIXa aaaOGaaGilaaaa@41CB@

которое удобно представить в ином виде:

                                                               F X = F X K X . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaDa aaleaacaWGybaabaGaey4fIOcaaOGaaGypaiaajAeadaWgaaWcbaGa amiwaaqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaG qbaOGae8NcWV0aaSbaaSqaaiaadIfaaeqaaOGaaGOlaaaa@4BDC@

Здесь K X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8lnaaBaaaleaa caWGybaabeaaaaa@459B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  (по терминологии Епстейна & Мажена Maugin1993Doubler,Epstein2010DoublerMaugin1993,Epstein2010) имплант в точке X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@38E4@ , определяемый как K X := H X 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8lnaaBaaaleaa caWGybaabeaakiaaiQdacaaI9aGaaKisamaaDaaaleaacaWGybaaba GaeyOeI0IaaGymaaaaaaa@4AB5@ . В итоге приходим к соотношению между полями:

                                                                 F =FK. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaCa aaleqabaGaey4fIOcaaOGaaGypaiaajAeatuuDJXwAKzKCHTgD1jha ryqr1ngBPrgigjxyRrxDYbacfaGae8NcWVKaaGOlaaaa@48D9@                                                                     (39)

 В нем поле F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@  совместно, т. е. curlF=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabw hacaqGYbGaaeiBaiaayIW7caqIgbGaaGypaiaahcdaaaa@3FAB@ , в то время как поля локальных деформаций и полной дисторсии несовместны:

                                                          curlH0иcurl F 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4yaiaabw hacaqGYbGaaeiBaiaayIW7caqIibGaeyiyIKRaaCimaiaaywW7caqG 4qGaaGzbVlaabogacaqG1bGaaeOCaiaabYgacaaMi8UaaKOramaaCa aaleqabaGaey4fIOcaaOGaeyiyIKRaaCimaiaai6caaaa@4F0A@

Таким образом, соотношение (39) есть в точности мультипликативная декомпозиция, предложенная Ли Lee1969.

Принимая во внимание высказанные соображения, заменим в выражении для тензора деформаций Грина-Венана (30) поле F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@  на поле F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaCa aaleqabaGaey4fIOcaaaaa@39F4@ :

                                                            E = 1 2 ( F ) T F I . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrdaahaaWcbeqa aiabgEHiQaaakiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabm aabaGaaGikaiaajAeadaahaaWcbeqaaiabgEHiQaaakiaaiMcadaah aaWcbeqaaiaabsfaaaGccaqIgbWaaWbaaSqabeaacqGHxiIkaaGccq GHsislcaqIjbaacaGLOaGaayzkaaGaaGOlaaaa@51BF@

В соответствии с (39), приходим тогда к равенству

                                                           E = 1 2 K T F T FKI . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrdaahaaWcbeqa aiabgEHiQaaakiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabm aabaWefv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGbaiab +Pa8lnaaCaaaleqabaGaaeivaaaakiaajAeadaahaaWcbeqaaiaabs faaaGccaqIgbGae4NcWVKaeyOeI0IaaKysaaGaayjkaiaawMcaaiaa i6caaaa@5D71@                                                                (40)

 Уточненному тензору Грина-Венана отвечает потенциал Сен-Венана (36) в виде

                                                         W = λ 2 I : E 2 +μ E : E . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaCa aaleqabaGaey4fIOcaaOGaaGypamaalaaabaGaeq4UdWgabaGaaGOm aaaadaqadaqaaiaajMeatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab=bcaGiaaygW7caaI6aGae8hiaaIaaGzaVlab=ri8 fnaaCaaaleqabaGaey4fIOcaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaey4kaSIaeqiVd0Mae8hHWx0aaWbaaSqabeaacqGH xiIkaaGccaaMb8UaaGOoaiaaygW7cqWFGaaicqWFecFrdaahaaWcbe qaaiabgEHiQaaakiaai6caaaa@61BE@

Заметим, что коэффициенты λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@39BB@  и μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@  здесь по-прежнему являются постоянными, поскольку потенциал определяется, как и в эксперименте, относительно натурального состояния. Единственное отличие состоит в том, что теперь это натуральное состояние определено лишь локально и при переходе от одного к другому приходится перебирать элементы семейства { S (X) } X S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXp1aaWba aSqabeaacaaIOaGaamiwaiaaiMcaaaGccaaI9bWaaSbaaSqaaiaadI facqGHiiIZcqWFse=udaWgaaqaaiaadkfaaeqaaaqabaaaaa@4D51@ .

4.2 Локальные деформации частного вида

С целью проиллюстрировать влияние несовместных деформаций на выражения для упругого потенциала и тензора напряжений, рассмотрим модельный случай. Предположим, что поле локальных деформаций является шаровым тензором:

                                                                 H=νI, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisaiaai2 dacqaH9oGBcaaMi8UaaKysaiaaiYcaaaa@3E74@                                                                      (41)

 где ν=ν(ρ,θ,ζ)>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiabe27aUjaaiIcacqaHbpGCcaaISaGaaGPaVlabeI7aXjaaiYca caaMc8UaeqOTdONaaGykaiaai6dacaaIWaaaaa@48DA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  скалярное поле. С физической точки зрения последнее может быть ассоциировано с объемной усадкой материала или неоднородной температурной деформацией. Соответственно, имплант имеет вид

                                                                K= δ I, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Pa8ljaai2dadaGc aaqaaiabes7aKbWcbeaakiaayIW7caqIjbGaaGilaaaa@4A3E@

 где для упрощения дальнейших формул мы взяли δ= ν 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ypaiabe27aUnaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaa@3E01@ . В таком случае полная дисторсия (39) есть поле

                                                                F = δ F, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOramaaCa aaleqabaGaey4fIOcaaOGaaGypamaakaaabaGaeqiTdqgaleqaaOGa aGjcVlaajAeacaaISaaaaa@3FA7@

и модифицированный тензор (40) принимает вид

                                                             E =δE+ δ1 2 I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrdaahaaWcbeqa aiabgEHiQaaakiaai2dacqaH0oazcqWFecFrcqGHRaWkdaWcaaqaai abes7aKjabgkHiTiaaigdaaeaacaaIYaaaaiaajMeacaaIUaaaaa@503F@

 Здесь поле E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFraaa@43E8@  соответствует тензору Грина-Венана, определенному по градиенту F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOraaaa@38D8@ . В рассматриваемом частном случае упругий потенциал представлен равенством

                                                W = λδ 2 +μ(δ1) I:E+μ δ 2 E:E+ 3 2 μ (δ1) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaCa aaleqabaGaey4fIOcaaOGaaGypamaabmaabaWaaSaaaeaacqaH7oaB cqaH0oazaeaacaaIYaaaaiabgUcaRiabeY7aTjaaiIcacqaH0oazcq GHsislcaaIXaGaaGykaaGaayjkaiaawMcaaiaajMeacaaMb8UaaGOo aiaaygW7tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbai ab=ri8fjabgUcaRiabeY7aTjabes7aKnaaCaaaleqabaGaaGOmaaaa kiab=ri8fjaaygW7caaI6aGaaGzaVlab=ri8fjabgUcaRmaalaaaba GaaG4maaqaaiaaikdaaaGaeqiVd0MaaGikaiabes7aKjabgkHiTiaa igdacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGilaaaa@7055@

 а поле напряжений Пиола второго рода имеет вид

                                                    S =δ λII:E+2μE + δ 2 3λ+2μ I. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4uamaaCa aaleqabaGaey4fIOcaaOGaaGypaiabes7aKnaabmaabaGaeq4UdWMa aGjcVlaajMeacqGHxkcXcaqIjbGaaGzaVlaaiQdacaaMb8+efv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFecFrcqGHRaWk caaIYaGaeqiVd0MaaGjcVlab=ri8fbGaayjkaiaawMcaaiabgUcaRm aalaaabaGaeqiTdqgabaGaaGOmaaaadaqadaqaaiaaiodacqaH7oaB cqGHRaWkcaaIYaGaeqiVd0gacaGLOaGaayzkaaGaaKysaiaai6caaa a@67FF@

 Полученное выражение отличается от (37). В частности, аналоги материальных констант теперь являются скалярными функциями координат. Но так и должно быть, поскольку закон состояния (37) определен относительно натуральной (хотя бы локально) отсчетной формы, в то время как полученный закон состояния записан относительно самонапряженной промежуточной формы. Тело приобрело фиктивную неоднородность. 

4.3 Идея эволюционной задачи 

Заметим, что скалярное поле δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@39AC@  (или ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@39BF@  ) в общем случае неизвестно и для своего определения требует решения эволюционной задачи Lychev2014Doubler,Lychev2018DoublerLychev2014,Lychev2018. Хотя ее полная формулировка выходит за рамки настоящей работы, мы приведем основные идеи, которые могли бы способствовать постановке такой задачи. Прежде всего введем эволюционный параметр α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@ , который характеризует течение эволюционного процесса. Будем полагать, что процесс эволюции связан с непрерывным присоединением инфинитезимально тонких слоев в трансверсальном направлении (вдоль толщины) к фиксированной подложке. Тогда, представляя форму S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@  как конечный результат такого присоединения, определим функцию ζ growth = ζ growth (α) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdO3aaS baaSqaaiaabEgacaWGYbGaam4BaiaadEhacaWG0bGaamiAaaqabaGc caaI9aGaeqOTdO3aaSbaaSqaaiaabEgacaWGYbGaam4BaiaadEhaca WG0bGaamiAaaqabaGccaaIOaGaeqySdeMaaGykaaaa@4B26@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  границу роста, определяющую текущее значение максимальной трансверсальной координаты. Следовательно, эволюционный процесс моделируется как движение поверхности вдоль промежуточной формы, где поверхность отделяет множество точек, между которыми установлены связи, от множества точек, не связанных между собой.

Получаем семейство самонапряженных форм[5] { S R,α } α[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXp1aaSba aSqaaiaadkfacaaISaGaaGPaVlabeg7aHbqabaGccaaI9bWaaSbaaS qaaiabeg7aHjabgIGiolaaiUfacaaIWaGaaGilaiaaykW7caaIXaGa aGyxaaqabaaaaa@5336@ , вложенных в S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaaqabaaaaa@446F@ , которые определены как

             S R,α = XE:X=O+ x 1 ( ρ 1 , ρ 2 )i+ x 2 ( ρ 1 , ρ 2 )j+zk, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaiaaiYcacaaMc8UaeqySdegabeaakiaai2dadaGabaqaaiaadI facqGHiiIZcqWFWesrcaaI6aGaaGjcVlaadIfacaaMb8UaaGypaiaa ygW7caWGpbGaaGzaVlabgUcaRiaaygW7caWG4bWaaWbaaSqabeaaca aIXaaaaOGaaGikaiabeg8aYnaaCaaaleqabaGaaGymaaaakiaaiYca caaMi8UaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaaGykaiaajMgaca aMb8Uaey4kaSIaaGzaVlaadIhadaahaaWcbeqaaiaaikdaaaGccaaI OaGaeqyWdi3aaWbaaSqabeaacaaIXaaaaOGaaGilaiaayIW7cqaHbp GCdaahaaWcbeqaaiaaikdaaaGccaaIPaGaaKOAaiaaygW7cqGHRaWk caaMb8UaamOEaiaajUgacaaISaaacaGL7baaaaa@7C0E@

                                                    ( ρ 1 , ρ 2 ,z) D 0 ×[H, ζ growth (α)] 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaaca aIOaGaeqyWdi3aaWbaaSqabeaacaaIXaaaaOGaaGilaiaayIW7cqaH bpGCdaahaaWcbeqaaiaaikdaaaGccaaISaGaaGjcVlaadQhacaaIPa GaeyicI4SaamiramaaBaaaleaacaaIWaaabeaakiabgEna0kaaiUfa cqGHsislcaWGibGaaGilaiaayIW7cqaH2oGEdaWgaaWcbaGaae4zai aadkhacaWGVbGaam4DaiaadshacaWGObaabeaakiaaiIcacqaHXoqy caaIPaGaaGyxaiabgkOimprr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaaIZaaaaaGccaGL9baa caaIUaaaaa@69AA@

 Каждой форме S R,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaWgaaWcbaGa amOuaiaaiYcacaaMc8UaeqySdegabeaaaaa@484F@  отвечает свое поле локальных деформаций H=H(α) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKisaiaai2 dacaqIibGaaGikaiabeg7aHjaaiMcaaaa@3D78@ , и мы будем предполагать, что выполнено условие отсутствия эволюции неоднородности LychevManzhirov2013:

                                                            α H(ρ,θ,ζ,α)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcqaHXoqyaaGaaKisaiaaiIcacqaHbpGCcaaI SaGaaGPaVlabeI7aXjaaiYcacaaMc8UaeqOTdONaaGilaiaaykW7cq aHXoqycaaIPaGaaGypaiaahcdacaaIUaaaaa@4E87@

Наконец, должно быть сформулировано условие, которое определяет характер возникновения структурной неоднородности:

                                                           F(H(α), ζ growth (α))=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFXeIrcaaIOaGaaKis aiaaiIcacqaHXoqycaaIPaGaaGilaiaaykW7cqaH2oGEdaWgaaWcba Gaae4zaiaadkhacaWGVbGaam4DaiaadshacaWGObaabeaakiaaiIca cqaHXoqycaaIPaGaaGykaiaai2dacaaIWaGaaGOlaaaa@5712@                                                               (42)

 Пример такого условия можно найти в работе Lychev2019. Уравнения баланса, классические краевые условия и соотношение типа (42) в совокупности составляют эволюционную задачу для растущей по толщине пластины.

4.4 Отсчетная геометрия 

В завершение статьи синтезируем риманову геометрию на подлежащем многообразии S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ , используя общие формулы из раздела 1.4 и частный вид (41) поля локальных деформаций. Материальная метрика G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4raaaa@38D9@  определяется в соответствии с формулой (13), и ее компоненты имеют вид

                                                               G IJ = ν 2 g IJ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamOsaaqabaGccaaI9aGaeqyVd42aaWbaaSqabeaa caaIYaaaaOGaaGjcVlaadEgadaWgaaWcbaGaamysaiaadQeaaeqaaO GaaGilaaaa@431E@                                                                   (43)

 где g ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3AFC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  компоненты евклидова метрического тензора, полученного сужением исходной евклидовой метрики пространства E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@  на многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ . Коэффициенты связности Леви-Чивита MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  символы Кристоффеля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  определяются согласно формулам (14). Однако по их выражениям ничего нельзя сказать об отличии геометрии от евклидовой. Это можно сделать, лишь вычислив кривизну по формуле (15). В частности, один из ее скалярных инвариантов MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  скалярная кривизна (16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  представлен выражением

                                            Scal=2 ν x 2 + ν y 2 + ν z 2 2ν 2 ν x 2 + 2 ν y 2 + 2 ν z 2 ν 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4uaiaabo gacaqGHbGaaeiBaiaai2dacaaIYaWaaSaaaeaadaqadaqaamaalaaa baGaeyOaIyRaeqyVd4gabaGaeyOaIyRaamiEaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGa eyOaIyRaeqyVd4gabaGaeyOaIyRaamyEaaaaaiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaamaalaaabaGaeyOa IyRaeqyVd4gabaGaeyOaIyRaamOEaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIYaGaeqyVd42aaeWaaeaadaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabe27aUbqaaiabgk Gi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH9oGBaeaacqGHciITca WG5bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaeqyVd4gabaGaeyOaIyRaamOEam aaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaacqaH9oGB daahaaWcbeqaaiaaisdaaaaaaOGaaGilaaaa@7790@

отличным от нуля. В произвольных координатах выражения получаются довольно громоздкими, поэтому скалярная кривизна записана относительно прямоугольных координат, индуцированных на многообразие S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jb8tnaaBaaaleaa caWGsbaabeaaaaa@45A5@ .

Полученная геометрия Римана эквивалентна геометрии Вейля Yavari2012aDoubler,Dhas2019DoublerYavari2012a,Dhas2019. Действительно, поскольку ν>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG Opaiaaicdaaaa@3B41@ , существует скалярное поле f: S R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiQ dacaaMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqb aiab=jb8tnaaBaaaleaacaWGsbaabeaakiabgkziUorr1ngBPrwtHr hAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHifaaa@558F@ , которое удовлетворяет условию: ν 2 = e f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aaW baaSqabeaacaaIYaaaaOGaaGypaiaadwgadaahaaWcbeqaaiaadAga aaaaaa@3D7B@ . Тогда равенство (43) принимает вид

                                                                G IJ = e f g IJ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGjbGaamOsaaqabaGccaaI9aGaamyzamaaCaaaleqabaGa amOzaaaakiaadEgadaWgaaWcbaGaamysaiaadQeaaeqaaOGaaGilaa aa@40EE@

и вычисление символов Кристоффеля по формуле (14) приводит к выражению

                                      Γ A C B = g CD 2 A g DB + B g AD D g AB 1 2 δ B C A f+ δ A C B f g AB G CD D f . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aa0 baaSqaaiaadgeaaeaacaWGdbaaaOWaaSbaaSqaaiaadkeaaeqaaOGa aGypamaalaaabaGaam4zamaaCaaaleqabaGaam4qaiaadseaaaaake aacaaIYaaaamaabmaabaGaeyOaIy7aaSbaaSqaaiaadgeaaeqaaOGa am4zamaaBaaaleaacaWGebGaamOqaaqabaGccqGHRaWkcqGHciITda WgaaWcbaGaamOqaaqabaGccaWGNbWaaSbaaSqaaiaadgeacaWGebaa beaakiabgkHiTiabgkGi2oaaBaaaleaacaWGebaabeaakiaadEgada WgaaWcbaGaamyqaiaadkeaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Ya aSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabes7aKnaaDaaale aacaWGcbaabaGaam4qaaaakiabgkGi2oaaBaaaleaacaWGbbaabeaa kiaadAgacqGHRaWkcqaH0oazdaqhaaWcbaGaamyqaaqaaiaadoeaaa GccqGHciITdaWgaaWcbaGaamOqaaqabaGccaWGMbGaeyOeI0Iaam4z amaaBaaaleaacaWGbbGaamOqaaqabaGccaWGhbWaaWbaaSqabeaaca WGdbGaamiraaaakiabgkGi2oaaBaaaleaacaWGebaabeaakiaadAga aiaawIcacaGLPaaacaaIUaaaaa@6F93@

Но это есть не что иное, как коэффициенты связности Вейля, построенной по евклидову метрическому тензору g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaK4zaaaa@38F9@  и 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  -форме ϑ=df MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dOKaaG ypaiaadsgacaWGMbaaaa@3C4A@ . Можно, таким образом, сделать следующие выводы. Во-первых, даже если индуцированные координаты декартовы, коэффициенты связности отличны от нуля. Во-вторых, связность Вейля обычно возникает в ситуациях, когда рассматриваются точечные дефекты или неоднородные температурные деформации. Но именно этот случай мы рассматриваем в данной работе.

Заключение

Резюмируем результаты настоящей работы:

 1. Сформулированы нелинейные уравнения деформирования гибких пластин в общих неортогональных координатах. В рамках вывода предполагались справедливыми гипотезы Кирхгофа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Лява.

 2. Подробно рассмотрены аспекты, связанные с моделированием несовместных деформаций в рамках геометрического подхода. В частности, сформулирована гипотеза о локальной разгрузке и определено мультипликативное разложение полной дисторсии. В работе рассматривался случай геометрии Римана.

 3. На примере импланта, представленного шаровым тензором, синтезирована материальная геометрия и показано, что она совпадает с геометрией Вейля.

 4. Показано, как можно сформулировать эволюционную задачу для определения объемной усадки.

   

[1] Отметим, что в работе используются два типа отображений. Один из них MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  это отображения, заданные в точках физического пространства E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesraaa@42AC@ , а другой MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  отображения, заданные в точках арифметического пространства 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaaikdaaaaaaa@43A8@  или 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaaiodaaaaaaa@43A9@ , где принимают значения криволинейные координаты. Поэтому если u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  поле смещений, рассматриваемое как отображение первого типа, а u ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca qI1baacaGLdmaaaaa@39C9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  его аналог, рассматриваемый как функция координат, то имеет место связь u ˜ =uQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca qI1baacaGLdmaacaaI9aGaaKyDaiablIHiVjaadgfaaaa@3DA0@ , где Q: 3 E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiQ dacaaMc8+efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFDeIudaahaaWcbeqaaiaaiodaaaGccqGHsgIRtuuDJXwAK1uy0H wmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+btifbaa@536B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  картрирующее отображение. В настоящей работе мы не делаем различия между полями u ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaacaaeaaca qI1baacaGLdmaaaaa@39C9@  и u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaaaa@3907@ ; оно ясно из контекста.

[2] <<Всякое перемещение тела с одной закрепленной точкой O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taaaa@38DB@  представляет собой вращение>> (с. 104).

[3] <<Любое перемещение тела может быть осуществлено путем поступательного перемещения вдоль некоторого направления и вращения около этого направления>> (с. 109).

[4] Это свойство доказывается в классических руководствах по геометрии Postnikov1979_I_Rus и аналитической динамики Pars1971_Rus. Вместе с тем для полноты изложения мы приведем здесь его краткое доказательство. Действительно, утверждение эквивалентно существованию вектора x0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiabgc Mi5kaahcdaaaa@3B8A@ , являющегося неподвижной точкой отображения R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaaaa@38E4@ , т. е. Rx=x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaiaajI hacaaI9aGaaKiEaaaa@3BB1@ . Для установления последнего свойства рассмотрим характеристический многочлен f R (λ)=det(RλI) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaqIsbaabeaakiaaiIcacqaH7oaBcaaIPaGaaGypaiGacsga caGGLbGaaiiDaiaaiIcacaqIsbGaeyOeI0Iaeq4UdWMaaKysaiaaiM caaaa@4667@  при λ=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaigdaaaa@3B3D@ . Поскольку определитель не меняется при транспонировании, то можно записать равенство f R (1)=det( R T I) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaqIsbaabeaakiaaiIcacaaIXaGaaGykaiaai2daciGGKbGa aiyzaiaacshacaaIOaGaaKOuamaaCaaaleqabaGaamivaaaakiabgk HiTiaajMeacaaIPaaaaa@44CA@ . С другой стороны,
               
R( R T I)=IR=(RI), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaiaaiI cacaqIsbWaaWbaaSqabeaacaWGubaaaOGaeyOeI0IaaKysaiaaiMca caaI9aGaaKysaiabgkHiTiaajkfacaaI9aGaeyOeI0IaaGikaiaajk facqGHsislcaqIjbGaaGykaiaaiYcaaaa@47C9@
и, в терминах определителей,
               
det( R T I)=det[R( R T I)]=( 1) 3 det(RI), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiaajkfadaahaaWcbeqaaiaadsfaaaGccqGHsisl caqIjbGaaGykaiaai2daciGGKbGaaiyzaiaacshacaaIBbGaaKOuai aaiIcacaqIsbWaaWbaaSqabeaacaWGubaaaOGaeyOeI0IaaKysaiaa iMcacaaIDbGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaale qabaGaaG4maaaakiGacsgacaGGLbGaaiiDaiaaiIcacaqIsbGaeyOe I0IaaKysaiaaiMcacaaISaaaaa@577F@
поэтому
               
f R (1)=det( R T I)=det(RI)= f R (1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaqIsbaabeaakiaaiIcacaaIXaGaaGykaiaai2daciGGKbGa aiyzaiaacshacaaIOaGaaKOuamaaCaaaleqabaGaamivaaaakiabgk HiTiaajMeacaaIPaGaaGypaiabgkHiTiGacsgacaGGLbGaaiiDaiaa iIcacaqIsbGaeyOeI0IaaKysaiaaiMcacaaI9aGaeyOeI0IaamOzam aaBaaaleaacaqIsbaabeaakiaaiIcacaaIXaGaaGykaiaaiYcaaaa@53D4@
что влечет равенство
f R (1)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaqIsbaabeaakiaaiIcacaaIXaGaaGykaiaai2dacaaIWaaa aa@3DA6@ . Таким образом, λ=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaigdaaaa@3B3D@  есть собственное значение R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaaaa@38E4@  и ему отвечает собственный вектор, который и является искомым. Заметим, что в доказательстве использовано: 1) трехмерность пространства V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFveVvaaa@4372@  и 2) то, что ортогональный тензор R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKOuaaaa@38E4@  является собственным.

[5] Значение α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaicdaaaa@3B27@  соответствует началу процесса, а значение α=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaigdaaaa@3B28@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugababaaaaaaaaapeGaa8hfGaaa@3A15@  окончанию процесса.

×

About the authors

Konstantin G. Koifman

Bauman Moscow State Technical University

Email: koifman.konstantin@gmail.com
ORCID iD: 0000-0002-7891-9995

assistant professor at the Department of Higher Mathematics

Russian Federation, Moscow

Sergey A. Lychev

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: lychevsa@mail.ru
ORCID iD: 0000-0001-7590-1389

Doctor of Physical and Mathematical Sciences, leading researcher of Laboratory of Mechanics of Technological Processes

Russian Federation, Moscow

References

  1. J.M. De Teresa (ed.) Nanofabrication: Nanolithography techniques and their applications. Bristol, UK: IOP Publishing, 2020, 450 p. DOI: http://doi.org/10.1088/978-0-7503-2608-7.
  2. Bhushan B. Mechanical Properties of Nanostructures. In: Springer Handbook of Nanotechnology. Berlin; Heidelberg: Springer Berlin, Heidelberg, 2005, pp. 1305–1338. DOI: https://doi.org/10.1007/978-3-540-29857-1_41.
  3. Corigliano A., Ardito R., Comi C., Frangi A., Ghisi A., Mariani S. Mechanics of Microsystems. Wiley, 2018, 424 p. Available at: https://avidreaders.ru/book/mechanics-ofmicrosystems.html?ysclid=m5wcp7r7qa165607938.
  4. Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V. Deformations of single-crystal silicon circular plate: Theory and experiment. Symmetry, 2024, vol. 16, issue 2, p. 137. DOI: http://doi.org/10.3390/sym16020137.
  5. Eremeyev V.A., Altenbach H., Morozov N.F. The influence of surface tension on the effective stiffness of nanosize plates. Doklady Physics, 2009, vol. 54, issue 2, pp. 98–100. DOI: https://doi.org/10.1134/S102833580902013X.
  6. Eremeyev V.A. On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica, 2015, vol. 227, issue 1, pp. 29–42. DOI: https://doi.org/10.1007/s00707-015-1427-y.
  7. Dedkova A.A., Glagolev P.Y., Gusev E.E., Djuzhev N.A., Kireev V.Y., Lychev S.A., Tovarnov D.A. Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics. Technical Physics, 2024, vol. 69, issue 2, pp. 201–212. DOI: http://doi.org/10.1134/s1063784224010109.
  8. Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York, Toronto, London: McGraw-Hill, 1959, 636 p. Available at: https://djvu.online/file/VtgNwUsEoWlyW?ysclid=m5wesnio3v852550962. (In Russ.)
  9. Lebedev L.P., Cloud M.J., Eremeyev V.A. Tensor Analysis with Applications in Mechanics. Singapore: World Scientific, 2010, 363 p. DOI: https://doi.org/10.1142/7826.
  10. Truesdell C., Noll W. The Non-Linear Field Theories of Mechanics. Berlin; Heidelberg: Springer Berlin, Heidelberg, 2004, 602 p. DOI: https://doi.org/10.1007/978-3-662-10388-3.
  11. Föppl A. Vorlesungen über technische Mechanik. Vol. 5. Leipzig: B.G. Teubner Verlag, 1907, 408 p. URL: https://archive.org/details/vorlesungenuber00foppgoog/mode/2up.
  12. Kármán T. Festigkeitsprobleme im Maschinenbau. Leipzig: B.G. Teubner Verlag, 1910, pp. 311–385. DOI: https://doi.org/10.1007/978-3-663-16028-1_5.
  13. Volmir A.S. Flexible plates and shells. Moscow: Gostekhizdat, 1956, 422 p. Available at: https://ru.djvu.online/file/UDisSs9cFCGHW?ysclid=m5xk1o2hn3747950990. (In Russ.)
  14. Ciarlet P.G. A justification of the von Kármán equations. Archive for Rational Mechanics and Analysis, 1980, vol. 73, issue 4, pp. 349–389. DOI: https://doi.org/10.1007/BF00247674.
  15. Marsden J.E., Hughes T.J.R. Mathematical Foundations of Elasticity. New York: Dover Publications, 1994, 576 p. Available at: https://authors.library.caltech.edu/records/s9jhk-sn323.
  16. Rakotomanana L. A Geometric Approach to Thermomechanics of Dissipating Continua. Birkhäuser Boston, MA, 2004, 265 p. DOI: https://doi.org/10.1007/978-0-8176-8132-6.
  17. Epstein M., Elzanowski M. Material Inhomogeneities and their Evolution. A Geometric Approach. Springer Berlin, Heidelberg, 2007, 261 p. DOI: https://doi.org/10.1007/978-3-540-72373-8.
  18. Epstein M. The geometrical language of continuum mechanics. Cambridge: Cambridge University Press, 2010, 312 p. DOI: https://doi.org/10.1017/CBO9780511762673.
  19. Steinmann P. Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer Berlin, Heidelberg, 2015, 517 p. DOI: https://doi.org/10.1007/978-3-662-46460-1.
  20. Lychev S.A., Koifman K.G. Geometric aspects of the theory of incompatible deformations. Part I. Uniform configurations. Nanomechanics Science and Technology: An International Journal, 2016, vol. 7, issue 3, pp. 177–233. DOI: http://dx.doi.org/10.1615/NanomechanicsSciTechnolIntJ.v7.i3.10.
  21. Lychev S., Koifman K. Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics. Walter de Gruyter GmbH, 2018, 370 p. DOI: https://doi.org/10.1515/9783110563214.
  22. Lee J.M. Introduction to Smooth Manifolds. New York: Springer New York, 2012, 708 p. DOI: https://doi.org/10.1007/978-1-4419-9982-5.
  23. Thurston W.P. Three-Dimensional Geometry and Topology. Vol. 1. Princeton, New Jersey: Princeton University Press, 1997, 159 p. Available at: https://djvu.online/file/d9kTToZY4xSoe?ysclid=m5xo4p5xsk264956559. (In Russ.)
  24. Newton I. The Mathematical Principles of Natural Philosophy. Moscow: Nauka, 1989, 706 p. Available at: https://djvu.online/file/wCBIlGHJY68zQ?ysclid=m5xq46subf880076048. (In Russ.)
  25. Pars L.A. A Treatise on Analytical Dynamics. Moscow: Nauka, 1971, 636 p. Available at: https://djvu.online/file/gE3s7zpUFwIti?ysclid=m5xqeo60cm741093621. (In Russ.)
  26. Postnikov M.M. Lectures in geometry. Semester I. Analytic geometry. Moscow: Nauka, 1979, 336 p. Available at: https://djvu.online/file/xZDfmLpe6umCj?ysclid=m5xqn6y67s772754531. (In Russ.)
  27. Noll W. Materially uniform simple bodies with inhomogeneities. Archive for Rational Mechanics and Analysis, 1967, vol. 27, issue 1, pp. 1–32. DOI: https://doi.org/10.1007/BF00276433.
  28. Truesdell C., Toupin R. The Classical Field Theories. In: Fl‥ugge S. (eds.) Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie. Encyclopedia of Physics / Handbuch der Physik, vol. 2/3/1. Berlin; Heidelberg: Springer Berlin, Heidelberg, 1960, pp. 226–858. DOI: https://doi.org/10.1007/978-3-642-45943-6_2.
  29. Kellogg O.D. Foundations of Potential Theory. Berlin; Heidelberg: Springer Berlin, Heidelberg, 1967, 384 p. DOI: https://doi.org/10.1007/978-3-642-90850-7.
  30. Lychev S., Koifman K., Bout D. Finite incompatible deformations in elastic solids: Relativistic approach. Lobachevskii Journal of Mathematics, 2022, vol. 43, issue 7, pp. 1908–1933. DOI: https://doi.org/10.1134/S1995080222100250.
  31. Chern S.S., Chen W.H., Lam K.S. Lectures on Differential Geometry. Singapore: World Scientific Publishing, 1999, 356 p. Available at: https://books.google.ru/books?id=Mvk7DQAAQBAJ&redir_esc=y.
  32. Lee J.M. Introduction to Riemannian Manifolds. Springer Cham, 2018, 437 p. DOI: https://doi.org/10.1007/978-3-319-91755-9.
  33. Lychev S.A., Koifman K.G., Pivovaroff N.A. Incompatible deformations in relativistic elasticity. Lobachevskii Journal of Mathematics, 2023, vol. 44, issue 6, pp. 2352–2397. DOI: https://doi.org/10.1134/S1995080223060343.
  34. Abraham R., Marsden J.E., Ratiu T. Manifolds, tensor analysis, and applications. 2nd edition. Springer Science & Business Media, 1988, 656 p. DOI: https://doi.org/10.1007/978-1-4612-1029-0.
  35. Lychev S.A., Koifman K.G. Contorsion of material connection in growing solids. Lobachevskii Journal of Mathematics, 2021, vol. 42, issue 8, pp. 1852–1875. DOI: https://doi.org/10.1134/S1995080221080187.
  36. Eckart C. The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Physical Review, 1948, vol. 73, issue 4, pp. 373–382. DOI: http://doi.org/10.1103/physrev.73.373.
  37. Kröner E. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Archive for Rational Mechanics and Analysis, 1959, vol. 4, issue 1, pp. 273–334. DOI: https://doi.org/10.1007/BF00281393.
  38. Lee J.M. Introduction to Topological Manifolds. New York: Springer New York, 2011, 433 p. DOI: https://doi.org/10.1007/978-1-4419-7940-7.
  39. Bilby B.A., Bullough R., Smith E. Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, vol. 231, issue 1185, pp. 263–273. DOI: https://doi.org/10.1098/rspa.1955.0171.
  40. Yavari A., Goriely A. Riemann–Cartan geometry of nonlinear dislocation mechanics. Archive for Rational Mechanics and Analysis, 2012, vol. 205, issue 1, pp. 59–118. DOI: https://doi.org/10.1007/s00205-012-0500-0.
  41. Miri M., Rivier N. Continuum elasticity with topological defects, including dislocations and extramatter. Journal of Physics A: Mathematical and General, 2002, vol. 35, number 7, pp. 1727–1739. DOI: http://doi.org/10.1088/0305-4470/35/7/317.
  42. Anthony K.H. Die theorie der disklinationen. Archive for Rational Mechanics and Analysis, 1970, vol. 39, issue 1, pp. 43–88. DOI: https://doi.org/10.1007/BF00281418.
  43. Anthony K.H. Die theorie der nichtmetrischen Spannungen in Kristallen. Archive for Rational Mechanics and Analysis, 1971, vol. 40, issue 1, pp. 50–78. DOI: https://doi.org/10.1007/BF00281530.
  44. Levi-Civita T. Nozione di parallelismo in una variet’a qualunque e conseguente specificazione geometrica della curvatura riemanniana. Rendiconti del Circolo Matematico di Palermo, 1916, vol. 42, issue 1, pp. 173–204. DOI: https://doi.org/10.1007/BF03014898.
  45. Goodbrake C., Goriely A., Yavari A. The mathematical foundations of anelasticity: existence of smooth global intermediate configurations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, vol. 477, issue 2245, p. 20200462. DOI: https://doi.org/10.1098/rspa.2020.0462.
  46. Voigt W. Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. II. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 1887, vol. 34, pp. 53–100.
  47. Cosserat E., Cosserat F. Th’eorie des corps d’eformables. Paris: A. Hermann et fils, 1909, 226 p. URL: https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp79796.
  48. Mindlin R.D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 1964, vol. 16, issue 1, pp. 51–78. DOI: https://doi.org/10.1007/BF00248490.
  49. Ericksen J.L., Truesdell C. Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis, 1957, vol. 1, issue 1, pp. 295–323. DOI: https://doi.org/10.1007/BF00298012.
  50. Reddy J.N. Theory and Analysis of Elastic Plates and Shells. Boca Raton: CRC Press, 2006, 568 p. DOI: https://doi.org/10.1201/9780849384165.
  51. Schield R.T. Inverse deformation results in finite elasticity. Journal of Applied Mathematics and Physics, 1967, vol. 18, pp. 490–500. DOI: https://doi.org/10.1007/BF01601719.
  52. Lurie A.I. Non-Linear Theory of Elasticity. Moscow: Nauka, 1980, 259 p. Available at: https://djvu.online/file/jUBUyrRG4xLui?ysclid=m5z7v8g7k9959065018. (In Russ.)
  53. Kanso E., Arroyo M., Tong Y., Yavari A., Marsden J.E., Desbrun M. On the geometric character of stress in continuum mechanics. Zeitschrift für angewandte Mathematik und Physik, 2007, vol. 58, pp. 843–856. DOI: https://doi.org/10.1007/s00033-007-6141-8.
  54. Gurtin M.E., Fried E., Anand L. The Mechanics and Thermodynamics of Continua. Cambridge: Cambridge University Press, 2010, 718 p. DOI: https://doi.org/10.1017/CBO9780511762956.
  55. Maugin G.A. Material Inhomogeneities in Elasticity. New York: Chapman & Hall, 1993, 292 p. DOI: https://doi.org/10.1201/9781003059882.
  56. Lee E.H. Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 1969, vol. 36, issue 1, pp. 1–6. DOI: https://doi.org/10.1115/1.3564580.
  57. Lychev S.A. Equilibrium equations for transversely accreted shells. ZAMM — Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2014, vol. 94, issue 1–2, pp. 118–129. DOI: https://doi.org/10.1002/zamm.201200231.
  58. Lychev S.A., Manzhirov A.V. The mathematical theory of growing bodies. Finite deformations. Journal of Applied Mathematics and Mechanics, 2013, vol. 77, issue 4, pp. 421–432. DOI: https://doi.org/10.1016/j.jappmathmech.2013.11.011. EDN: https://elibrary.ru/wqyump. (In English; original in Russian)
  59. Lychev S., Koifman K. Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell. Acta Mechanica, 2019, vol. 230, issue 11, pp. 3989–4020. DOI: https://doi.org/10.1007/s00707-019-02399-7.
  60. Yavari A., Goriely A. Weyl geometry and the nonlinear mechanics of distributed point defects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, vol. 468, issue 2148, pp. 3902–3922. DOI: https://doi.org/10.1098/rspa.2012.0342.
  61. Dhas B., Srinivasa A.R., Roy D. A Weyl geometric model for thermo-mechanics of solids with metrical defects. DOI: http://dx.doi.org/10.48550/arXiv.1904.06956.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Diagram 1

Download (15KB)
3. Diagram 2

Download (18KB)

Copyright (c) 2024 Koifman K.G., Lychev S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».