Solution of the Föppl – von Kármán equations for square plates
- Authors: Digilov A.V.1, Lychev S.A.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Issue: Vol 30, No 4 (2024)
- Pages: 26-45
- Section: Mechanics
- URL: https://journals.rcsi.science/2541-7525/article/view/310461
- DOI: https://doi.org/10.18287/2541-7525-2024-30-5-26-45
- ID: 310461
Cite item
Full Text
Abstract
The present paper develops an approach to obtaining solutions of the Föppl – von Kármán equations for square plates, which are based on direct algebraisation of the boundary-value problem. The solution is obtained in term of expansion into basis of the space of square-integrable function. The system of eigenfunction of a linear self-adjoined operator is used as the basis. The expansion coefficients are defined by the reduction method from an infinite-dimensional system of cubic equations. It allows one to consider the proposed solution as non-linear generalisation of classic Galerkin method.
About the authors
Alexander V. Digilov
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Email: digilov@ipmnet.ru
ORCID iD: 0000-0001-6892-7740
Junior researcher of Laboratory of Modelling in Solid Mechanics
Russian Federation, MoscowSergey A. Lychev
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Author for correspondence.
Email: lychevsa@mail.ru
ORCID iD: 0000-0001-7590-1389
leading researcher of Laboratory of Mechanics of Technological Processes
Russian Federation, MoscowReferences
- Föppl A. Vorlesungen über technische Mechanik. Vol. 5. Leipzig: B. G. Teubner Verlag, 1907, 497 p. Available at: https://archive.org/details/vorlesungenbert26fpgoog/mode/2up.
- Kármán T. Festigkeitsprobleme im Maschinenbau. Leipzig: B. G. Teubner Verlag, 1910.
- Lychev S., Digilov A., Djuzhev N. Galerkin-Type Solution of the Föppl — von Kármán Equations for Square Plates. Symmetry, 2025, vol. 17, issue 1, p. 32. DOI: http://dx.doi.org/10.3390/sym17010032.
- Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York; Toronto; London: McGraw-Hill, 1959, 656 p. Available at: https://djvu.online/file/VtgNwUsEoWlyW?ysclid=m60p0jwao912220652. (In Russ.)
- Volmir A.S. Flexible plates and shells. Moscow: Gostekhizdat, 1956, 422 p. Available at: https://djvu.online/file/UDisSs9cFCGHW?ysclid=m60pax8mr9205429504. (In Russ.)
- Nekhotyaev V.V., Sachenkov A.V. Large deflections of thin elastic plates. Issledovaniya po Teorii Plastin i Obolochek, 1972, no. 8, pp. 42–76. Available at: https://www.mathnet.ru/rus/kutpo437. (In Russ.)
- Zhang Y. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Science China Physics, Mechanics & Astronomy, 2016, vol. 59, Article number 624602. DOI: https://doi.org/10.1007/s11433-015-5751-y.
- Khoa D.N. Calculation of flexible rectangular plates using the method of successive approximation: Candidate’s of Engineering Sciences thesis. Moscow: Moskovskii gosudarstvennyi stroitel’nyi universitet, 2023, 150 p. Available at: https://mgsu.ru/science/Dissoveti/Zashita_dissert/dao-ngok-kkhoa/Dissertatsiya_DaoNK.pdf. (In Russ.)
- Panov D.Iu. Application of Acad. B.G. Galerkin’s method to certain nonlinear problems of the theory of elasticity. Prikladnaya Matematika i Mekhanika, 1939, vol. 3, issue 2.
- Yamaki N. Influence of Large Amplitudes on Free Flexural Vibrations of Elastic Plates. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1961, vol. 41, issue 12, pp. 501–510. DOI: http://dx.doi.org/10.1002/zamm.19610411204.
- Sundara Raja Iyengar K.T., Matin Naqvi M. Large deflection of rectangular plates. International Journal of Non-Linear Mechanics, 1966, vol. 1, issue 2, pp. 109–122. DOI: https://doi.org/10.1016/0020-7462(66)90024-2.
- Dai H.H., Paik J.K., Atluri S.N. The Global Nonlinear Galerkin Method for the Analysis of Elastic Large Deflections of Plates under Combined Loads: A Scalar Homotopy Method for the Direct Solution of Nonlinear Algebraic Equations. Computers, Materials and Continua, 2011, vol. 23, no. 1, pp. 69–100. DOI: https://doi.org/10.3970/cmc.2011.023.069.
- Dai H.H., Paik J.K., Atluri S.N. The Global Nonlinear Galerkin Method for the Solution of von Karman Nonlinear Plate Equations: An Optimal & Faster Iterative Method for the Direct Solution of Nonlinear Algebraic Equations , using ]. Computers, Materials and Continua, 2011, vol. 23, no. 2, pp. 155–186. DOI: http://dx.doi.org/10.3970/cmc.2011.023.155.
- Dai H., Yue X., Atluri S.N. Solutions of the von Kármán plate equations by a Galerkin method, without inverting the tangent stiffness matrix. Journal of Mechanics of Materials and Structures, 2014, vol. 9, no. 2, pp. 195–226. DOI: http://dx.doi.org/10.2140/jomms.2014.9.195.
- Wang X., Liu X., Wang J., Zhoue Y. A wavelet method for bending of circular plate with large deflection. Acta Mechanica Solida Sinica, 2015, vol. 28, issue 1, pp. 83–90. DOI: https://doi.org/10.1016/S0894-9166(15)60018-0.
- Zhang L., Wang J., Zhou Y.H. Wavelet solution for large deflection bending problems of thin rectangular plates. Archive of Applied Mechanics, 2015, vol. 85, pp. 355–365. DOI: https://doi.org/10.1007/s00419-014-0960-9.
- Lurie A.I. Theory of elasticity. Berlin; Heidelberg: Springer Science & Business Media, 2010, 1050 p. DOI: https://doi.org/10.1007/978-3-540-26455-2.
- Ciarlet P.G. Mathematical Elasticity: Three-dimensional elasticity. Elsevier, 1988.
- Ciarlet P.G. Mathematical Elasticity, vol. 1: Three-dimensional elasticity. Amsterdam: Elsevier, 1988, 452 p.
- Kolmogorov A.N., Fomin S.V. Introductory real analysis. New York: Courier Corporation, 1975, 403 p. URL: https://archive.org/details/IntroductoryRealAnalysis.
- Cantor G. Ein beitrag zur mannigfaltigkeitslehre. Journal für die reine und angewandte Mathematik (Crelles Journal), 1878, vol. 1878, issue 84, pp. 242–258. DOI: https://doi.org/10.1515/crelle-1878-18788413.
- Koyalovich B.M. A study of infinite systems of linear algebraic equations. Izv. Fiz.-Mat. Inst, 1930, vol. 3, pp. 41–167.
- Kantorovich L.V., Krylov V.I. Approximate methods of higher analysis. New York: Dover Publications, 2018.
- Levy S. Bending of Rectangular Plates with Large Deflections // NACA Technical Notes, 1942. 19 p. URL: https://digital.library.unt.edu/ark:/67531/metadc59995.
Supplementary files
