On one solution of the vibration problem of mechanical systems with moving boundaries

Cover Page

Cite item

Full Text

Abstract

An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximate method was made depending on the speed of the boundary movement.

Full Text

Introduction

One-dimensional systems, the boundaries of which move, are widely used in engineering: ropes of lifting installations [1–9], flexible transmission links [1; 10–14], solid fuel rods [15], drill strings [3], etc. The presence of moving boundaries causes significant difficulties in describing such systems; therefore, approximate methods of solution are mainly used here [1–3; 10; 14–21]. Among the analytical methods, the most effective is the method proposed in [11], which consists in the se-lection of new variables that stop the boundaries and leave the wave equation invariant. In [22], the solution is sought in the form of a superposition of two waves running towards each other. The method used in [23] is also effective, which consists in replacing the geometric variable with a purely imaginary variable, which allows us to apply the wave equation to the Laplace equation and apply the method of the theory of functions of a complex variable to the solution.

In this article an analytical method for solving the wave equation that describes the oscillations of systems with moving boundaries is proposed. By replacing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations that can be solved using direct and inverse methods. An inverse method is described which makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions have been obtained for a fairly wide range of boundary motion laws. A direct asymptotic method for the approximate solution of a functional equation is considered. The errors of the approximate method are estimated, depending on the speed of the boundary movement. This approach successfully combines the methodology used in [11; 22; 24–27].

1. Statement of the problem

Let us consider free oscillations in a system with moving boundaries.

utt(x,t)a2uxx(x,t)=0. (1.1)

The boundary conditions at the fixed ends have the form

ul1(t),t=0;  ul2(t),t=0. (1.2)

(l1(0)xl2(0))

Here, u(x,t) is the displacement of the point of the object with the coordinate x at time t; a is the velocity of wave propagation in the system; l1(x),l2(x) are the laws of boundary motion.

In works [11; 22] Vesnitsky A.I. proposed a fairly general method for selecting new variables for the wave equation. Following this method, the replacement of variables is performed in the following form:

ξ=φ(t+x/a)ψ(tx/a);τ=a1φ(t+x/a)+ψ(tx/a), (1.3)

where φandψ are some functions. As a result of such a replacement, the original equation remains invariant (wave), and φ,ψ are determined from the condition of constancy ξ at the boundaries.

In new variables ξ,τ, defined by relation (1.3), the initial problem (1.1)–(1.2) is reduced to the following

Uττ(ξ,τ)Uξξ(ξ,τ)=0 (1.4)

under boundary conditions

U(l1(τ),τ)=0;  Uξ(l2(τ),τ)=0; (1.5)

(l1(τ)ξl2(τ)).

Here τ,ξ are a dimensionless time (τ0) and a dimensionless spatial coordinate; U(ξ,τ)=u(x,t); li(τ) — the laws of movement of borders.

Boundary conditions (1.5) in variables ξ,τ are set on new, generally speaking, moving boundaries, the position of which depends on two functions φandψ. Since they φandψ are arbitrary, one can require that the boundary conditions should be written on fixed boundaries, i. e. l1=const and l2=const(l2>l1).

For this, it is necessary that φandψ necessary to satisfy the system of functional equations:

φ(τ+l1(τ))ψ(τl1(τ))=l1;φ(τ+l2(τ))ψ(τl2(τ))=l2, (1.6)

which uniquely determine the functions of φandψ through the known laws of boundary motion. When the borders move at a speed higher than the speed of wave propagation, the solution of the wave equation becomes incorrect, therefore, a restriction is imposed on the speed of the boundaries l'i(τ)<1. Constants li can be arbitrary, but not equal values (for example, l1=0,  l2=1). Then system (1.6) will take the form:

φ(τ+l1(τ))=ψ(τl1(τ));φ(τ+l2(τ))=ψ(τl2(τ))+1, (1.7)

The existence of a solution to this system was proved in [11].

Solution (1.4)–(1.5) is found by the Fourier method [27]:

U(ξ,τ)=n=1sinω0nξDncosω0nτ+Ensinω0nτ==n=1rnsinω0n(τ+ξ)+αnsinω0n(τξ)+αn, (1.8)

where ω0n(ε0τ)=πnl2l1;  rn=12Dn2+En2;  αn=arctgEn/Dn.

The solution obtained in [1–3; 10–13; 22–24] has a form similar to (1.8).

Returning to the variables x and t, we get

u(x,t)=n=1rnsinω0nφ(t+x)+αnsinω0nψ(tx)+αn. (1.9)

Here φandψ, they are found from the solutions of the system of functional equations (1.7) according to the known laws of boundary motion, and the constants Dn,  En are determined from the initial conditions.

Generally speaking, it is not easy to solve system (1.7). There are two different approaches to solving it:

  • inverse problems [3, 11, 15, 22-26], i. e. according to the given "phases" of natural oscillations φandψ, finding the laws of motion of the boundaries li(τ);
  • direct problems [15; 28], i. e. finding the "phases" of natural oscillations according to the given laws of motion of the boundaries li(τ).

2. Solution of the inverse problem

To solve system (1.7) A.I. Vesnitsky [11] used the inverse method, i. e. to the given φandψ from the resulting system of equations, the laws of boundary motion l1(τ)andl2(τ)are found. When solving the inverse problem, the equations of system (1.7) are reduced to the study of algebraic or transcendental equations with respect to li(τ), which in many cases admit exact solutions. Based on the inverse problem Vesnitsky A.I. and Potapov A.I. [11; 22] solutions for a fairly wide range of laws of boundary motion are obtained.

System (1.7) has infinitely many solutions, since on the interval [0, 1] the function φ(z) and on the interval [–1,0] the function ψ(z) can be set arbitrarily, and using the method of successive approximations [27], the values of functions in other areas are found. It is enough for us to find one particular solution that determines the one-to-one correspondence of points z and points y1=φ(z);  y2=ψ(z). Of all the solutions, we are only interested in monotone ones, and monotone solutions in the case of boundary movement at a speed lower than the wave propagation speed (|l1'(τ)|<1;|l2'(τ)|<1) can only be monotonously increasing.

Lemma. If the function φ(z) – is monotonously increasing (decreasing), then the function ψ(z) is also monotonously increasing (decreasing).

Proof. Indeed, from the first equation of system (1.7) at τ=τ0, it follows that

φ(τ0+l1(τ0))=ψ(τ0l1(τ0)).

Now suppose that τ1>τ0 and the function φ(z) also increases (decreases), then in the case of boundary motion at a speed lower than the wave propagation speed (|l1'(τ)|<1;|l2'(τ)|<1), we will have:

τ1+l1(τ1)>τ0+l1(τ0);

τ1l1(τ1)>τ0l1(τ0)

Since the function φ(z) in this case increases (decreases), then in order to perform the first equality of system (1.7) at τ=τ1, it is necessary that the function ψ(z) increases (decreases), i.e. the function ψ(z) is also increasing (decreasing).

Let us also show that the monotonic solution of system (1.7) in the case of boundary motion at a speed lower than the wave propagation velocity can only be increasing.

Indeed, given the inequality l1(τ)<l2(τ) we get:

τ+l1(τ)<τ+l2(τ);  τl1(τ)>τl2(τ);

Suppose that φ(z)andψ(z) they decrease, then we can write:

φ(τ+l2(τ))<φ(τ+l1(τ))=ψ(τl1(τ))<ψ(τl2(τ)).

However, this inequality contradicts the second equation of system (1.7). Therefore, functions φ(z)andψ(z) can only be monotonically increasing. The lemma is proved. 

Note that from system (1.7) the functions φ(z)andψ(z) are determined up to a constant in the sense that if φ(z)andψ(z) are the solution of system (1.7), then φ(z)+Candψ(z)+C are also a solution (here C — is an arbitrary constant). Therefore, for certainty, we can choose such a function ψ(z), that ψ(1)=1. At the same time, from the second equation of system (1.7) for τ=0, it follows that φ(1)=0. From the first equation of system (1.7) for τ=0, we obtain

φ(0)=ψ(0).

When assigning functions φ(z)andψ(z), several arbitrary constants are introduced into them. The dependence of the found laws of motion l1(τ)andl2(τ) found on the values of these constants makes it possible to approximate quite diverse laws of motion of the boundaries by laws obtained from solving the inverse problem.

The set of reverse solutions is quite wide. The solutions below satisfy the relations:

l1(0)=0;l2(0)=1;  ψ(1)=1.

The set of obtained laws of motion of boundaries is divided into classes:

  1. The solutions shown in Table 2.1 belong to class A when the left boundary is fixed and φ(z)=ψ(z). Solutions numbered 1, 2, 3, 6 were obtained by A.I. Vesnitsky and A.I. Potapov [11; 22], solutions 4, 5, 7 were obtained for the first time.

 

Table 2.1. Class A decisions

Таблица 2.1. Решения класса А

 

l2(τ)

φ(z)=ψ(z)

1

ντ+1

Ln(νz+1)/(1ν)Ln(1+ν)/(1ν)1

2

Bτ+B2/B

Bz+B+0,25B2B+0,251

3

1/(4Bτ+1)

Bz2+0,5zB0,5

4

1αarcsh0,5B1eατB2eατ

B1(eαzeα)+B2(eαzeα)1,B1=B2+1/(eαeα),α>0

5

(τ+B)2(α21)+1+2αB+B2α(τ+B)

 Ln(z+B)2+1+2αB+B2Ln(1+α)/(1α)Ln(B1)2+1+2αB+B2Ln(1+α)/(1α)1

6

1αd+1+d2+(ατ+B)2,d=1+B2α22α

arctg(αz+B)arcctg(1+B2α2)/(2α)arctg(Bα)arcctg(1+B2α2)/(2α)1

7

1αln1+1+4A2e2ατ2Aτ

Aeαz+B,  α=ln1+1+4A22A

 

  1. The next class B is determined by the fact that the boundaries move according to the same law:

l1(τ)=l(τ);l2(τ)=1+l(τ);l(0)=0.

Since the movement of the boundaries is interconnected, there is also an interconnection between the functions φ(z)andψ(z). It is expressed by the functional equation:

φ(φ¯(ψ(z))+1)ψ(z1)=1. (2.1)

System (1.7) in this case can only be satisfied by functions that are solutions of equation (2.1). Here are two previously unknown solutions of class B:

1) l=ντ;φ(z)=(1ν)z/2+(1+ν)/21;ψ(z)=(1+ν)z/2+(1+ν)/21;

2) l(τ)=1αln[(BeατCeατ)/(BC)];φ(z)=B(eαz1)C(eα1)1;B=C+1/(eα1);ψ(z)=C(eαz1)C(eα1)1.

  1. For class C solutions, the boundaries move symmetrically in different directions, i.e.

l1(τ)=l(τ);l2(τ)=l(τ).

The equation of the relationship of functions φ(z) and ψ(z) here has the form:

φ(z)=ψ(z)+0,5

Class C solutions are obtained from class A solutions using the following formulas:

l(τ)=lA(τ);ψ(z)=12ψA(z);φ(z)=ψ(z)+0,5,

where the corresponding functions of class A solutions are indicated with the index A.

  1. A solution of class D is obtained for the case when both boundaries move uniformly:

l1(τ)=(B2B1)τ/(B2+B1);l2(τ)=(B2e1/cB1)τ/(B1+B2e1/c)+1;

φ(z)=CLn(B1z+D)CLn(DB2)1;

ψ(z)=CLn(B1z+D)CLn(DB2)1;

D=(B1+B2e1/c)/(e1/c1).

The solution number one in Table 2.1 can be used to study the rope vibrations of load-lifting installations at uniform ascent (descent) [1; 2; 4–9]. The above solutions of class B can be used in the study of oscillations of flexible transmission links [12–14]. The rest of the solutions are model.

The class of inverse solutions is limited, for example, no solution was obtained for the uniformly accelerated motion of the boundary l(τ)=1+ντ2. Obtaining the indicated solution is relevant when describing the longitudinal and transverse vibrations of the ropes of load-lifting installations at the acceleration stage [1].

3. Solution of the direct problem

The solution of the direct problem, as a rule, faces great difficulties. Well-known methods for solving functional equations, sometimes can find φ and ψ from known ones li(τ), but in a limited range of argument values and in a form that is not very suitable for analytical research.

In this regard, we consider an approximate solution of the functional equation

φ(τ+l(τ))φ(τl(τ))=1. (3.1)

For an approximate solution of equation (3.1), it is proposed to use the asymptotic method [28].

For fixed boundaries l(τ)=l, the solution to (3.1) is the linear function

φs(z)=12lz+const.

In the case of a slow motion of the boundary l(τ), the “phase” of the wave φ(z) during its run through the system changes slightly with respect to φs(z). It is assumed that φ(z) has derivatives of any order, and writing φ(τ+l(τ)) in the form of power series in l(τ), after substituting them into (1.1), we obtain a differential equation for slowly changing current "phase" φ(τ)

k=0lk+1(k+1)!dk+1φdτk+1=1. (3.2)

Since φ(τ) deviates slightly from the linear law φs(z=τ) during the wave travel time, each next term on the left side of equation (3.2) is much smaller than the previous one, and its solution must be sought in the form of a series

φ(τ)=n=0φn(τ). (3.3)

Substituting (3.3) into (3.2) and equating the terms of the same order of smallness individually to zero, we obtain for the zero approximation

φ0(τ)=120τdtl(t).

In the case of a linear law of motion of the boundary l(t)=1+ντ, the phase of dynamic natural oscillations is equal to

φ(z)=ln[(νz+1)/(1+ν)]2ν. (3.4)

Values (3.4) were compared with the values obtained using the exact solution (Table 2.1):

φ(z)=Ln(νz+1)/(1ν)Ln(1+ν)/(1ν)1. (3.5)

The values of the maximum absolute errors Δ of the asymptotic method, depending on the speed of the boundary movement ν, are given in Table 3.1.

 

Table 3.1. Error of the asymptotic method depending on the velocity of the boundary

Таблица 3.1. Погрешность асимптотического метода в зависимости от скорости границы

ν

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Δ

0,002

0,006

0,013

0,023

0,036

0,053

0,073

0,100

0,139

 

In the interval ν[0,1;0,6] the errors of the approximate method are small. The increase of the error when ν approaches unity is explained by the fact that the function (3.5) becomes infinitely large when ν1.

Insignificant errors make it possible to apply the described method to solve functional equation (3.1) in cases where its exact solution is not known.

Conclusion

Using the analytical method of variable substitution, the original boundary value problem is reduced to a system of functional-difference equations. The solution of the original problem depends on whether it is possible to solve the given system (1.7). Vesnitsky A.I. proposed to solve it by the reverse method, i.e. to set functions φ and ψ and from the resulting system of equations to find the laws of motion of the boundaries. The paper presents five new inverse solutions of the system.

An approximate asymptotic method for solving the functional equations of system (1.7) is considered. Under conditions of slow motion of the boundaries, minor errors make it possible to apply this method in cases where the exact solution of the system of functional equations is not known.

The above solutions can be used in the study of rope vibrations of lifting installations with a uniform ascent (descent), flexible links of transmission (for example, a belt drive), etc.

×

About the authors

Vladislav L. Litvinov

Samara State Technical University; Lomonosov Moscow State University

Author for correspondence.
Email: vladlitvinov@rambler.ru
ORCID iD: 0000-0002-6108-803X

Candidate of Technical Sciences, head of the Department of General-Theoretical Disciplines, assistant professor, doctoral student

Russian Federation, 244, Molodogvardeyskaya Street, Samara, 443100; GSP-1, Leninskie Gory, 1, Moscow, 119991

Kristina V. Litvinova

Lomonosov Moscow State University

Email: kristinalitvinova900@rambler.ru
ORCID iD: 0000-0002-1711-9273

student

Russian Federation, GSP-1, Leninskie Gory, 1, Moscow, 119991

References

  1. Savin G.N., Goroshko O.A. Dynamics of a thread of variable length. Kyiv, 1962, 332 p. (In Russ.)
  2. Goroshko O.A., Savin G.N. Introduction to the mechanics of deformable one-dimensional bodies of variable length. Kiev: Naukova Dumka, 1971, 270 p. (In Russ.)
  3. Litvinov V.L., Anisimov V.N. Mathematical modeling and study of oscillations of one-dimensional mechanical systems with moving boundaries: monograph. Samara: Samarskii gosudarstvennyi tekhnicheskii universitet, 2017, 149 p. Available at: https://www.elibrary.ru/item.asp?id=36581641. EDN: https://www.elibrary.ru/yqksvn. (In Russ.)
  4. Kolosov L.B., Zhigula T.I. Longitudinal and transverse vibrations of the rope string of the lifting installation. News of the Higher Institutions. Mining Journal, 1981, no. 3, pp. 83–86. (In Russ.)
  5. Zhu W.D., Chen Y. Theoretical and experimental investigation of elevator cable dynamics and control. Journal of Vibrations and Acoustics, 2006, vol. 128, issue 1, pp. 66–78. DOI: https://doi.org/10.1115/1.2128640.
  6. Shi Y., Wu L., Wang Y. Nonlinear analysis of natural frequencies of a cable system. Journal of Vibration Engineering & Technologies, 2006, no. 2, pp. 173–178.
  7. Wang L., Zhao Y. Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations. Journal of Sound and Vibration, 2009, vol. 319, issues 1–2, pp. 1–14. DOI: http://dx.doi.org/10.1016/j.jsv.2008.08.020.
  8. Zhao Y., Wang L. On the symmetrical modal interaction of the suspended cable: Three-to one in-ternal resonance. Journal of Sound and Vibration, 2006, vol. 294, issues 4–5, pp. 1073–1093. DOI: https://doi.org/10.1016/j.jsv.2006.01.004.
  9. Litvinov V.L. Longitudinal oscillations of the rope of variable length with a load at the end. Bulletin of Science and Technical Development, 2016, no. 1 (101), pp. 19–24. Available at: https://vntr.ru/ftpgetfile.php?id=919; https://elibrary.ru/item.asp?id=28765822. EDN: https://elibrary.ru/yfmnxr. (In Russ.)
  10. Samarin Yu.P. On a nonlinear problem for a wave equation in a one-dimensional space. Applied Mathematics and Mechanics, 1964, vol. 26, no. 3, pp. 77–80. Available at: https://pmm.ipmnet.ru/ru/Issues/1964/28-3. (In Russ.)
  11. Vesnitsky A.I. Waves in systems with moving boundaries and loads. Moscow: Fizmatlit, 2001, 320 p. Available at: https://knigogid.ru/books/1915093-volny-v-sistemah-s-dvizhuschimisya-granicami-i-nagruzkami/toread?ysclid= lnx2mbqz7e29843152. (In Russ.)
  12. Litvinov V.L., Anisimov V.N. Transverse vibrations rope moving in longitudinal direction. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2017, vol. 19, no. 4, pp. 161–166. Available at: https://elibrary.ru/item.asp?id=32269460. EDN: https://elibrary.ru/tboayo. (In Russ.)
  13. Erofeev V.I., Kolesov D.A., Lisenkova E.E. Investigation of wave processes in a one-dimensional system lying on an elastic-inertial base with a moving load. Bulletin of Science and Technical Development, 2013, no. 6 (70), pp. 18–29. Available at: https://vntr.ru/ftpgetfile.php?id=696; https://elibrary.ru/item.asp?id=22010422. EDN: https://elibrary.ru/snqzyx. (In Russ.)
  14. Litvinov V.L. Transverse vibrations viscoelastic rope variable length on an elastic foundation with considering the influence of the resistance forces environmental. Bulletin of Science and Technical Development, 2015, no. 4 (92), pp. 29–33. Available at: https://vntr.ru/ftpgetfile.php?id=845; https://elibrary.ru/item.asp?id=29275371. EDN: https://elibrary.ru/yqqlqb. (In Russ.)
  15. Litvinov V.L. Exact and approximate solutions the problem of oscillations of a rod of variable length. Bulletin of Science and Technical Development, 2017, no. 9 (121), pp. 46–57. Available at: https://vntr.ru/vols/2017-09/5vntr9-121.pdf; https://elibrary.ru/item.asp?id=30267074. EDN: https://elibrary.ru/zmiruh. (In Russ.)
  16. Anisimov V.N., Litvinov V.L. Investigation of resonance characteristics of mechanical objects with moving borders by application of the Kantorovich-Galyorkin method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2009, 1 (18), pp. 149–158. DOI: https://doi.org/10.14498/vsgtu658. EDN: https://www.elibrary.ru/kzzxnn. (In Russ.)
  17. Lezhneva A.A. Flexural oscillations of a beam of variable length. Mechanics of Solids, 1970, no. 1, pp. 159–161. (In Russ.)
  18. Anisimov V.N., Korpen I.V., Litvinov V.L. Application of the Kantorovich-Galerkin method for solving boundary value problems with conditions on moving boundaries. Mechanics of Solids, 2018, vol. 53, no. 2, pp. 177–183. DOI: https://doi.org/10.3103/S0025654418020085. EDN: https://www.elibrary.ru/wtofxt. (in English; original in Russian)
  19. Litvinov V.L. Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations. Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS, 2020, vol. 26, no. 2, pp. 188–199. DOI: https://doi.org/10.21538/0134-4889-2020-26-2-188-199. EDN: https://elibrary.ru/lgjahf. (In Russ.)
  20. Litvinov V.L., Litvinova K.V. An approximate method for solving boundary value problems with moving boundaries by reduction to integro-differential equations. Computational Mathematics and Mathematical Physics, 2022, vol. 62, 6, pp. 945–954. DOI: https://doi.org/10.1134/s0965542522060112. EDN: https://elibrary.ru/qexsaz. (In English; original in Russian)
  21. Litvinov V.L. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support. Theoretical and Mathematical Physics, 2023, vol. 215, issue 2, pp. 709–715. DOI: https://doi.org/10.1134/S0040577923050094. (In English; original in Russian)
  22. Vesnitsky A.I. Inverse problem for a one-dimensional resonator changing its dimensions in time. Izv. vuzov. Radiophysics, 1971, vol. 10, Pp. 1538–1542.
  23. Barsukov K.A., Grigoryan G.A. On the theory of a waveguide with movable boundaries. Izv. vuzov. Radiophysics, 1976, vol. 2, pp. 280–285.
  24. Anisimov V.N., Litvinov V.L., Korpen I.V. On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2012, 3(28), pp. 145–151. DOI: https://doi.org/10.14498/vsgtu1079. EDN: https://www.elibrary.ru/qbutvh. (In Russ.)
  25. Litvinov V.L. Solving boundary value problems with moving boundaries using the method of change of variables in the functional equation. Middle Volga Mathematical Society Journal, 2013, vol. 15, 3, pp. 112–119. Available at: https://www.mathnet.ru/rus/svmo405. (In Russ.)
  26. Anisimov V.N., Litvinov V.L. Analytical method of solving wave equation with a wide range of conditions for a moving boundary. Bulletin of Science and Technical Development, 2016, no. 2 (102), pp. 28–35. Available at: https://vntr.ru/ftpgetfile.php?id=929; https://elibrary.ru/item.asp?id=28765827. EDN: https://elibrary.ru/yfmnzp. (In Russ.)
  27. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Equations in partial derivatives of mathematical physics. Moscow: Vysshaya shkola, 1970. Available at: https://alexandr4784.narod.ru/kgs.html?ysclid=lnyc6xnrdc604386929. (In Russ.)
  28. Litvinov V.L. Study free vibrations of mechanical objects with moving boundaries using asymptotical method. Middle Volga Mathematical Society Journal, 2014, vol. 16, issue 1, pp. 83–88. Available at: https://journal.svmo.ru/archive/article?id=1295. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Litvinov V.L., Litvinova K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».