Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate

Cover Page

Cite item

Full Text

Abstract

The purpose of this work is to reduce the singularly perturbed system of kinetics of a suicidal substrate. Methods of decomposition and integral manifolds are used. The dimension of the original problem is reduced. The obtained equations on the integral manifold are analyzed for stability. An example is given of comparing the numerical solutions of the original system and those obtained after reducing the dimensionality using the above methods.

Full Text

1 Предварительные сведения

В моделях химической кинетики наличие малого параметра связано с тем, что в химической системе одновременно происходят существенно разнящиеся скоростью процессы. Значительное число публикаций по теории и приложениям как методов упрощения моделей макроскопической кинетики, так и моделирования критических явлений включает в себя большое разнообразие задач, сочетающихся со сравнительно небольшим арсеналом применяемых средств анализа и довольно распространенным мнением, что эти задачи не имеют ничего общего как по своей постановке, так и по методам решения. Понижение размерности моделей является важнейшим приемом исследования сложных систем любой природы, разумеется, не только в области энзимной кинетики, а критические явления исключительно важны и сами по себе, и как инструмент познания сложных процессов. Основываясь на геометрической теории сингулярных возмущений, появился подход, позволяющий с единых позиций этой теории рассматривать и методы редукции кинетических систем, и методы математического моделирования критических явлений в таковых. В статье описывается применение метода интегральных многообразий к редукции [1] системы [2] из раздела "Кинетика суицидного субстрата". Работа [3] подробно описывает обоснование алгоритма декомпозиции задачи энзимной кинетики для динамических систем с быстрыми и медленными переменными и построения интегральных многообразий [4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 8], основные результаты теории интегральных многообразий содержатся в [9], источники [10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 11] также относятся к вышеупомянутым категориям. Для указанных выше систем данные субстраты важны, поскольку они обеспечивают способ нацеливания на определенный фермент для инактивации. Они особенно полезны при введении лекарственных средств, поскольку они не вредны в своей обычной форме, и только определенный фермент может преобразовать их в форму ингибитора. Например, субстраты самоубийства были исследованы для использования при лечении депрессии, эпилепсии и некоторых опухолей.

2 Постановка задачи. Исходная система и ее матричная форма

 В данной работе рассматривается система уравнений кинетики суицидного субстрата с безразмерными коэффициентами и переменными:

                                          ds(t) dt =s((ϵp+1)ϵpξ(ϵp+1)ζ(ϵp+1) e i )+ ρ 1+ρ ξ,(2.1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaam4CaiaaiIcacaWG0bGaaGykaaqaaiaadsgacaWG0baaaiaa i2dacqGHsislcaWGZbGaaGikaiaaiIcatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaadchacqGHRaWkcaaIXaGa aGykaiabgkHiTiab=v=aYlaadchacqaH+oaEcqGHsislcaaIOaGae8 x9diVaamiCaiabgUcaRiaaigdacaaIPaGaeqOTdONaeyOeI0IaaGik aiab=v=aYlaadchacqGHRaWkcaaIXaGaaGykaiaadwgadaWgaaWcba GaamyAaaqabaGccaaIPaGaey4kaSYaaSaaaeaacqaHbpGCaeaacaaI XaGaey4kaSIaeqyWdihaaiabe67a4jaaiYcacaaIOaGaaGOmaiaai6 cacaaIXaGaaGykaaaa@76DC@

                                                              d e i (t) dt =ωζ,(2.2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacqaHjpWDcqaH2oGEcaaISaGaaG ikaiaaikdacaaIUaGaaGOmaiaaiMcaaaa@47EA@

                                             ϵ dξ(t) dt =s((ϵp+1)ϵpξ(ϵp+1)ζ(ϵp+1) e i )ξ,(2.3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aGaam4CaiaaiIcacaaIOaGae8x9diVaamiCaiabgUcaRiaaigda caaIPaGaeyOeI0Iae8x9diVaamiCaiabe67a4jabgkHiTiaaiIcacq WF1pG8caWGWbGaey4kaSIaaGymaiaaiMcacqaH2oGEcqGHsislcaaI OaGae8x9diVaamiCaiabgUcaRiaaigdacaaIPaGaamyzamaaBaaale aacaWGPbaabeaakiaaiMcacqGHsislcqaH+oaEcaaISaGaaGikaiaa ikdacaaIUaGaaG4maiaaiMcaaaa@7409@

                                                      ϵ dζ(t) dt = ϵp (1+ϵp)(1+ρ) ξψζ(2.4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH2oGEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aWaaSaaaeaacqWF1pG8caWGWbaabaGaaGikaiaaigdacqGHRaWk cqWF1pG8caWGWbGaaGykaiaaiIcacaaIXaGaey4kaSIaeqyWdiNaaG ykaaaacqaH+oaEcqGHsislcqaHipqEcqaH2oGEcaaIOaGaaGOmaiaa i6cacaaI0aGaaGykaaaa@642D@

с начальными условиями:

                                                   s(0)=1,ξ(0)=0,ζ(0)=0, e i (0)=0.(2.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacaaIWaGaaGykaiaai2dacaaIXaGaaGilaiabe67a4jaaiIcacaaI WaGaaGykaiaai2dacaaIWaGaaGilaiabeA7a6jaaiIcacaaIWaGaaG ykaiaai2dacaaIWaGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGc caaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaai6cacaaIOaGaaGOmai aai6cacaaI1aGaaGykaaaa@5380@

В фундаментальной монографии [2] описан алгоритм сведения кооперативного явления к данной обезразмеренной системе (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5). Коэффициенты системы (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5) и малый параметр ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8aaa@4402@  определяются формулами:

                               K m = k 1 + k 2 k 1 ,σ= s 0 K m ,ϵ= e 0 e 0 + K m ,ρ= k 1 k 2 ,p= σ ϵ ,ψ= k 3 + k 4 k 1 + k 2 ,ω= ϕ 1+ϵp ,ϕ= k 4 k 1 + k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGTbaabeaakiaai2dadaWcaaqaaiaadUgadaWgaaWcbaGa eyOeI0IaaGymaaqabaGccqGHRaWkcaWGRbWaaSbaaSqaaiaaikdaae qaaaGcbaGaam4AamaaBaaaleaacaaIXaaabeaaaaGccaaISaGaeq4W dmNaaGypamaalaaabaGaam4CamaaBaaaleaacaaIWaaabeaaaOqaai aadUeadaWgaaWcbaGaamyBaaqabaaaaOGaaGilamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGypamaalaaaba GaamyzamaaBaaaleaacaaIWaaabeaaaOqaaiaadwgadaWgaaWcbaGa aGimaaqabaGccqGHRaWkcaWGlbWaaSbaaSqaaiaad2gaaeqaaaaaki aaiYcacqaHbpGCcaaI9aWaaSaaaeaacaWGRbWaaSbaaSqaaiabgkHi TiaaigdaaeqaaaGcbaGaam4AamaaBaaaleaacaaIYaaabeaaaaGcca aISaGaamiCaiaai2dadaWcaaqaaiabeo8aZbqaaiab=v=aYdaacaaI SaGaeqiYdKNaaGypamaalaaabaGaam4AamaaBaaaleaacaaIZaaabe aakiabgUcaRiaadUgadaWgaaWcbaGaaGinaaqabaaakeaacaWGRbWa aSbaaSqaaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam4AamaaBaaale aacaaIYaaabeaaaaGccaaISaGaeqyYdCNaaGypamaalaaabaGaeqy1 dygabaGaaGymaiabgUcaRiab=v=aYlaadchaaaGaaGilaiabew9aMj aai2dadaWcaaqaaiaadUgadaWgaaWcbaGaaGinaaqabaaakeaacaWG RbWaaSbaaSqaaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam4AamaaBa aaleaacaaIYaaabeaaaaGccaaIUaaaaa@8F7C@

Здесь e 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaaIWaaabeaaaaa@39D7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  начальная концентрация фермента, s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaaaaa@39E5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  начальная концентрация субстрата, k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacqGHsislcaaIXaaabeaaaaa@3ACB@ , k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIXaaabeaaaaa@39DE@ , k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIYaaabeaaaaa@39DF@ , k 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIZaaabeaaaaa@39E0@  и k 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaI0aaabeaaaaa@39E1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  постоянные положительные параметры скоростей реакций.

Поскольку 0<ϵ1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=a Yhbbfv3ySLgzGueE0jxyaGGbaiab+PMi9iaaigdaaaa@4C27@ , система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) содержит разнотемповые переменные. Непосредственное численное интегрирование таких систем связано с вычислительной жесткостью, что продиктовано наличием малого параметра в знаменателе правой части дифференциального уравнения. Поэтому в данной статье к решению и анализу системы (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.5) применяются методы декомпозиции и интегральных многообразий [3; 4; 8; 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 18].

Обозначим через x= s(t) e i (t) ,y= ξ(t) ζ(t) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dadaqadaqaauaabeqaceaaaeaacaWGZbGaaGikaiaadshacaaIPaaa baGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaa aaaiaawIcacaGLPaaacaaISaGaamyEaiaai2dadaqadaqaauaabeqa ceaaaeaacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacqaH2oGEcaaIOa GaamiDaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaaaa@5026@   F= ϵps+ ρ ρ+1 (ϵp+1)s 0 ω , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2 dadaqadaqaauaabeqaciaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbciab=v=aYlaadchacaWGZbGaey4kaSYaaSaaae aacqaHbpGCaeaacqaHbpGCcqGHRaWkcaaIXaaaaaqaaiaaiIcacqWF 1pG8caWGWbGaey4kaSIaaGymaiaaiMcacaWGZbaabaGaaGimaaqaai abeM8a3baaaiaawIcacaGLPaaacaaISaaaaa@59C4@

 f=(p+1)(ei1)s0, Gϵsp1sϵp+pϵ+ϵp+ρψ,gϵp+sϵp+sei0G=sp1s(p+1)p(1+p)(1+ρ)ψ,g=(p+1)s(p+1)sei0

Тогда система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) в матричной форме примет вид:

                                                        x ˙ =f(x,t,ϵ)+F(x,t,ϵ)y,(2.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaca GaaGypaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGilamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGykai abgUcaRiaadAeacaaIOaGaamiEaiaaiYcacaWG0bGaaGilaiab=v=a YlaaiMcacaWG5bGaaGilaiaaiIcacaaIYaGaaGOlaiaaiAdacaaIPa aaaa@59B1@

                                                        ϵ y ˙ =g(x,t,ϵ)+G(x,t,ϵ)y.(2.7) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8ceWG5bGbaiaa caaI9aGaam4zaiaaiIcacaWG4bGaaGilaiaadshacaaISaGae8x9di VaaGykaiabgUcaRiaadEeacaaIOaGaamiEaiaaiYcacaWG0bGaaGil aiab=v=aYlaaiMcacaWG5bGaaGOlaiaaiIcacaaIYaGaaGOlaiaaiE dacaaIPaaaaa@5C26@

Начальные условия (2.5) тоже запишем в векторной форме:

                                                 x(0)= s(0) e i (0) = 1 0 ,y(0)= ξ(0) ζ(0) = 0 0 .(2.8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaaIWaGaaGykaiaai2dadaqadaqaauaabeqaceaaaeaacaWGZbGa aGikaiaaicdacaaIPaaabaGaamyzamaaBaaaleaacaWGPbaabeaaki aaiIcacaaIWaGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaaeaa faqabeGabaaabaGaaGymaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG ilaiaayIW7caWG5bGaaGikaiaaicdacaaIPaGaaGypamaabmaabaqb aeqabiqaaaqaaiabe67a4jaaiIcacaaIWaGaaGykaaqaaiabeA7a6j aaiIcacaaIWaGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaaeaa faqabeGabaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG OlaiaaiIcacaaIYaGaaGOlaiaaiIdacaaIPaaaaa@6039@

Полученная система (2.6), (2.7) является сингулярно возмущенной системой дифференциальных уравнений, линейной по быстрым переменным.

Вопросы существования интегрального многообразия систем типа (2.6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.8), алгоритм построения асимптотики подробно описаны в работах [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 4].

3 Существование, построение и устойчивость интегрального многообразия

 Для (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) вырожденная система (при ϵ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aaaa@4583@  ) имеет вид:

                                                      null

                                                              d e i (t) dt =ωζ,(3.2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacqaHjpWDcqaH2oGEcaaISaGaaG ikaiaaiodacaaIUaGaaGOmaiaaiMcaaaa@47EB@

                                                           0=s(1ζ e i )ξ,(3.3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai2 dacaWGZbGaaGikaiaaigdacqGHsislcqaH2oGEcqGHsislcaWGLbWa aSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabe67a4jaaiYcaca aIOaGaaG4maiaai6cacaaIZaGaaGykaaaa@4942@

                                                                0=ψζ.(3.4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai2 dacqGHsislcqaHipqEcqaH2oGEcaaIUaGaaGikaiaaiodacaaIUaGa aGinaiaaiMcaaaa@4250@

Отметим, что:

I. Уравнения (3.3) и (3.4) дают единственное решение ξ=s(1ζ e i ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypaiaadohacaaIOaGaaGymaiabgkHiTiabeA7a6jabgkHiTiaadwga daWgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaaaa@4404@   ζ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaaG ypaiaaicdacaaIUaaaaa@3BFD@

II. Функции правых частей уравнений (2.6), (2.7) и их частные производные по всем переменным до третьего порядка включительно равномерно непрерывны и ограничены.

III. Определитель матрицы null и след матрицы G 0 (x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam 4ramaaBaaaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaaaa@3F77@  равный 1+ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgU caRiabeI8a5baa@3B72@ , положительны.

Из [1; 4] следует, что система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) имеет устойчивое интегральное многообразие медленных движений вида y=h(t,x,ϵ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaWGObGaaGikaiaadshacaaISaGaamiEaiaaiYcatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaaiMcaaaa@4B7B@ , движение по которому описывается уравнениями (опускаем промежуточные преобразования):

                                              s ˙ = 1 ρ+1 ϵ p+pρρ (ρ+1) 2 s+ 1 ρ+1 e i s+ϵP(s, e i )(3.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaca GaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiabeg8aYjabgUcaRiaa igdaaaGaeyOeI0Yefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuGacqWF1pG8daWcaaqaaiaadchacqGHRaWkcaWGWbGaeqyWdiNa eyOeI0IaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaIPa WaaWbaaSqabeaacaaIYaaaaaaakiaadohacqGHRaWkdaWcaaqaaiaa igdaaeaacqaHbpGCcqGHRaWkcaaIXaaaaiaadwgadaWgaaWcbaGaam yAaaqabaGccaWGZbGaey4kaSIae8x9diVaamiuaiaaiIcacaWGZbGa aGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGikaiaaio dacaaIUaGaaGynaiaaiMcaaaa@6EB2@

                                                              e ˙ i =ϵT(s, e i ),(3.6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaaca WaaSbaaSqaaiaadMgaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamivaiaaiIcacaWGZbGaaG ilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaiaaiIca caaIZaGaaGOlaiaaiAdacaaIPaaaaa@512A@

где P(s, e i )= pρ+p2ρ (ρ+1) 2 e i s+ pρψ+pψ+p ψ (ρ+1) 2 s 2 pρψ+pψ+p ψ (ρ+1) 2 e i s 2 + ρ (ρ+1) 2 e i 2 s, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGa aGypamaalaaabaGaamiCaiabeg8aYjabgUcaRiaadchacqGHsislca aIYaGaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWa aWbaaSqabeaacaaIYaaaaaaakiaadwgadaWgaaWcbaGaamyAaaqaba GccaWGZbGaey4kaSYaaSaaaeaacaWGWbGaeqyWdiNaeqiYdKNaey4k aSIaamiCaiabeI8a5jabgUcaRiaadchaaeaacqaHipqEcaaIOaGaeq yWdiNaey4kaSIaaGymaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGa am4CamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaamiCai abeg8aYjabeI8a5jabgUcaRiaadchacqaHipqEcqGHRaWkcaWGWbaa baGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWaaWbaaS qabeaacaaIYaaaaaaakiaadwgadaWgaaWcbaGaamyAaaqabaGccaWG ZbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaHbpGCae aacaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMcadaahaaWcbeqaaiaa ikdaaaaaaOGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaakiaado hacaaISaaaaa@873B@

  T(s, e i )= pω ψ(ρ+1) s pω ψ(ρ+1) e i s, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaIPaGa aGypamaalaaabaGaamiCaiabeM8a3bqaaiabeI8a5jaaiIcacqaHbp GCcqGHRaWkcaaIXaGaaGykaaaacaWGZbGaeyOeI0YaaSaaaeaacaWG WbGaeqyYdChabaGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdaca aIPaaaaiaadwgadaWgaaWcbaGaamyAaaqabaGccaWGZbGaaGilaaaa @572D@  где медленное инвариантное многообразие MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это:

                                                 ξ ζ =h(s, e i ,ϵ)= h 0 (s, e i )+ϵ h 1 (s, e i )+O( ϵ 2 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaeqOVdGhabaGaeqOTdOhaaaGaayjkaiaawMcaaiaa i2dacaWGObGaaGikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPb aabeaakiaaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbciab=v=aYlaaiMcacaaI9aGaamiAamaaBaaaleaacaaIWaaabe aakiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGc caaIPaGaey4kaSIae8x9diVaamiAamaaBaaaleaacaaIXaaabeaaki aaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaI PaGaey4kaSIaam4taiaaiIcacqWF1pG8daahaaWcbeqaaiaaikdaaa GccaaIPaGaaGypaaaa@69FC@

                        = e i s+s 0 +ϵ 1+pρ+p ρ+1 s p(ψρ+ψ+1) ψ(ρ+1) s 2 pρ+p+2 ρ+1 s e i + 1 ρ+1 e i 2 s+ p(ψρ+ψ+1) ψ(ρ+1) e i s 2 p ψ(ρ+1) s p ψ(ρ+1) e i s +O( ϵ 2 ).(3.7) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaqbaeqabiqaaaqaaiabgkHiTiaadwgadaWgaaWcbaGaamyAaaqa baGccaWGZbGaey4kaSIaam4CaaqaaiaaicdaaaaacaGLOaGaayzkaa Gaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa cqWF1pG8daqadaqaauaabeqaceaaaeaadaWcaaqaaiaaigdacqGHRa WkcaWGWbGaeqyWdiNaey4kaSIaamiCaaqaaiabeg8aYjabgUcaRiaa igdaaaGaam4CaiabgkHiTmaalaaabaGaamiCaiaaiIcacqaHipqEcq aHbpGCcqGHRaWkcqaHipqEcqGHRaWkcaaIXaGaaGykaaqaaiabeI8a 5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykaaaacaWGZbWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGWbGaeqyWdiNaey4k aSIaamiCaiabgUcaRiaaikdaaeaacqaHbpGCcqGHRaWkcaaIXaaaai aadohacaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIXaaabaGaeqyWdiNaey4kaSIaaGymaaaacaWGLbWaa0baaSqaai aadMgaaeaacaaIYaaaaOGaam4CaiabgUcaRmaalaaabaGaamiCaiaa iIcacqaHipqEcqaHbpGCcqGHRaWkcqaHipqEcqGHRaWkcaaIXaGaaG ykaaqaaiabeI8a5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykaaaa caWGLbWaaSbaaSqaaiaadMgaaeqaaOGaam4CamaaCaaaleqabaGaaG OmaaaaaOqaamaalaaabaGaamiCaaqaaiabeI8a5jaaiIcacqaHbpGC cqGHRaWkcaaIXaGaaGykaaaacaWGZbGaeyOeI0YaaSaaaeaacaWGWb aabaGaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaaaaiaa dwgadaWgaaWcbaGaamyAaaqabaGccaWGZbaaaaGaayjkaiaawMcaai abgUcaRiaad+eacaaIOaGae8x9di=aaWbaaSqabeaacaaIYaaaaOGa aGykaiaai6cacaaIOaGaaG4maiaai6cacaaI3aGaaGykaaaa@B885@

Следуя [1; 4], выполним замену переменных в системе (2.9), (2.10) по формулам x=w+ϵH(t,w,z,ϵ),y=h(t,x,ϵ)+z, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaWG3bGaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuGacqWF1pG8caWGibGaaGikaiaadshacaaISaGaam4DaiaaiY cacaWG6bGaaGilaiab=v=aYlaaiMcacaaISaGaamyEaiaai2dacaWG ObGaaGikaiaadshacaaISaGaamiEaiaaiYcacqWF1pG8caaIPaGaey 4kaSIaamOEaiaaiYcaaaa@5E90@  где H= H 0 +O(ϵ)= ρ ρ+1 w 1 ρ (1+ρ)ψ + w 1 ψ 0 ω ψ z+O(ϵ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaWGibWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam4taiaaiIca tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYl aaiMcacaaI9aWaaeWaaeaafaqabeGacaaabaWaaSaaaeaacqaHbpGC aeaacqaHbpGCcqGHRaWkcaaIXaaaaaqaaiabgkHiTmaalaaabaGaam 4DamaaBaaaleaacaaIXaaabeaakiabeg8aYbqaaiaaiIcacaaIXaGa ey4kaSIaeqyWdiNaaGykaiabeI8a5baacqGHRaWkdaWcaaqaaiaadE hadaWgaaWcbaGaaGymaaqabaaakeaacqaHipqEaaaabaGaaGimaaqa amaalaaabaGaeqyYdChabaGaeqiYdKhaaaaaaiaawIcacaGLPaaaca WG6bGaey4kaSIaam4taiaaiIcacqWF1pG8caaIPaaaaa@6CD0@  и запишем ее результат:

                                           w ˙ 1 = 1 ρ+1 ϵ p+pρρ (ρ+1) 2 w 1 + 1 ρ+1 w 1 w 2 +ϵP( w 1 , w 2 ),(3.8) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTmaalaaabaGaaGym aaqaaiabeg8aYjabgUcaRiaaigdaaaGaeyOeI0Yefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaadcha cqGHRaWkcaWGWbGaeqyWdiNaeyOeI0IaeqyWdihabaGaaGikaiabeg 8aYjabgUcaRiaaigdacaaIPaWaaWbaaSqabeaacaaIYaaaaaaakiaa dEhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaaigdaae aacqaHbpGCcqGHRaWkcaaIXaaaaiaadEhadaWgaaWcbaGaaGymaaqa baGccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9diVaam iuaiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadEha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGilaiaaiIcacaaIZaGaaG OlaiaaiIdacaaIPaaaaa@72FF@

                                                            w ˙ 2 =ϵT( w 1 , w 2 ),(3.9) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamivaiaaiIcacaWG3bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaaGilaiaaiIcacaaIZaGaaGOlaiaaiMdacaaIPaaaaa@51E2@

Начальные условия примут вид:

                                                      w 1 (0,ϵ)=1ϵ ρ ρ+1 , w 2 =0.(3.10) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaaGykaiaai2daca aIXaGaeyOeI0Iae8x9di=aaSaaaeaacqaHbpGCaeaacqaHbpGCcqGH RaWkcaaIXaaaaiaaiYcacaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaaG ypaiaaicdacaaIUaGaaGikaiaaiodacaaIUaGaaGymaiaaicdacaaI Paaaaa@5BFB@

Получили систему специального вида (3.8), (3.9), описывающую движение по интегральному многообразию, с начальными условиями (3.10).

Для исследования (3.8), (3.9) на устойчивость перепишем систему (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) в виде:

                                                    ds(t) dt =(ϵp+1)s+S(s, e i ,ξ,ζ),(3.11) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaam4CaiaaiIcacaWG0bGaaGykaaqaaiaadsgacaWG0baaaiaa i2dacqGHsislcaaIOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuGacqWF1pG8caWGWbGaey4kaSIaaGymaiaaiMcacaWGZbGa ey4kaSIaam4uaiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWcbaGaam yAaaqabaGccaaISaGaeqOVdGNaaGilaiabeA7a6jaaiMcacaaISaGa aGikaiaaiodacaaIUaGaaGymaiaaigdacaaIPaaaaa@61A3@

                                                          d e i (t) dt = E i (s, e i ,ξ,ζ),(3.12) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyzamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaqaaiaadsgacaWG0baaaiaai2dacaWGfbWaaSbaaSqaaiaadMgaae qaaOGaaGikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPbaabeaa kiaaiYcacqaH+oaEcaaISaGaeqOTdONaaGykaiaaiYcacaaIOaGaaG 4maiaai6cacaaIXaGaaGOmaiaaiMcaaaa@5117@

                                                       ϵ dξ(t) dt =ξ+Ξ(s, e i ,ξ,ζ),(3.13) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH+oaEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aGaeyOeI0IaeqOVdGNaey4kaSIaeuONdGLaaGikaiaadohacaaI SaGaamyzamaaBaaaleaacaWGPbaabeaakiaaiYcacqaH+oaEcaaISa GaeqOTdONaaGykaiaaiYcacaaIOaGaaG4maiaai6cacaaIXaGaaG4m aiaaiMcaaaa@5FF0@

                                                     ϵ dζ(t) dt = ϵp (1+ϵp)(1+ρ) ξψζ,(3.14) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8daWcaaqaaiaa dsgacqaH2oGEcaaIOaGaamiDaiaaiMcaaeaacaWGKbGaamiDaaaaca aI9aWaaSaaaeaacqWF1pG8caWGWbaabaGaaGikaiaaigdacqGHRaWk cqWF1pG8caWGWbGaaGykaiaaiIcacaaIXaGaey4kaSIaeqyWdiNaaG ykaaaacqaH+oaEcqGHsislcqaHipqEcqaH2oGEcaaISaGaaGikaiaa iodacaaIUaGaaGymaiaaisdacaaIPaaaaa@659F@

где S(s, e i ,ξ,ζ)=ϵpsξ+(ϵp+1)sζ+(ϵp+1)s e i + ρ 1+ρ ξ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWGZbGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaISaGa eqOVdGNaaGilaiabeA7a6jaaiMcacaaI9aWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGWbGaam4Caiabe67a 4jabgUcaRiaaiIcacqWF1pG8caWGWbGaey4kaSIaaGymaiaaiMcaca WGZbGaeqOTdONaey4kaSIaaGikaiab=v=aYlaadchacqGHRaWkcaaI XaGaaGykaiaadohacaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaS YaaSaaaeaacqaHbpGCaeaacaaIXaGaey4kaSIaeqyWdihaaiabe67a 4jaaiYcaaaa@7031@   E i (s, e i ,ξ,ζ)=ωζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaaiIcacaWGZbGaaGilaiaadwgadaWgaaWc baGaamyAaaqabaGccaaISaGaeqOVdGNaaGilaiabeA7a6jaaiMcaca aI9aGaeqyYdCNaeqOTdOhaaa@4853@   Ξ(s, e i ,ξ,ζ)=(ϵp+1)sϵpsξ(ϵp+1)sζ(ϵp+1)s e i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ikaiaadohacaaISaGaamyzamaaBaaaleaacaWGPbaabeaakiaaiYca cqaH+oaEcaaISaGaeqOTdONaaGykaiaai2dacaaIOaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caWGWbGaey4k aSIaaGymaiaaiMcacaWGZbGaeyOeI0Iae8x9diVaamiCaiaadohacq aH+oaEcqGHsislcaaIOaGae8x9diVaamiCaiabgUcaRiaaigdacaaI PaGaam4CaiabeA7a6jabgkHiTiaaiIcacqWF1pG8caWGWbGaey4kaS IaaGymaiaaiMcacaWGZbGaamyzamaaBaaaleaacaWGPbaabeaakiaa i6caaaa@716E@  Находим: S(0, e i ,0,0)=0, E i (0, e i ,0,0)=0,Ξ(0, e i ,0,0)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaaIWaGaaGilaiaadwgadaWgaaWcbaGaamyAaaqabaGccaaISaGa aGimaiaaiYcacaaIWaGaaGykaiaai2dacaaIWaGaaGilaiaadweada WgaaWcbaGaamyAaaqabaGccaaIOaGaaGimaiaaiYcacaWGLbWaaSba aSqaaiaadMgaaeqaaOGaaGilaiaaicdacaaISaGaaGimaiaaiMcaca aI9aGaaGimaiaaiYcacqqHEoawcaaIOaGaaGimaiaaiYcacaWGLbWa aSbaaSqaaiaadMgaaeqaaOGaaGilaiaaicdacaaISaGaaGimaiaaiM cacaaI9aGaaGimaiaai6caaaa@5A41@  Система (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) имеет многообразие стационарных положений, а также устойчивое интегральное многообразие (3.7), для которого справедлив обобщенный принцип сведения [4]. Движение по этому многообразию описывается системой дифференциальных уравнений (3.8), (3.9), которая тоже имеет многообразие стационарных положений. Перепишем (3.8), (3.9) в виде:

                                                       w ˙ 1 =K w 1 +S( w 1 , w 2 ,t,ϵ),(3.15) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaadUeacaWG3bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaam4uaiaaiIcacaWG3bWaaSbaaSqaai aaigdaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamiDaiaaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGqbciab=v=aYlaaiMcacaaISaGaaGikaiaaiodacaaIUaGaaGym aiaaiwdacaaIPaaaaa@589B@

                                                          w ˙ 2 =ϵ E i ( w 1 , w 2 ,t,ϵ)(3.16) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8x9diVaamyramaaBaaaleaacaWGPb aabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa dEhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDaiaaiYcacqWF1p G8caaIPaGaaGikaiaaiodacaaIUaGaaGymaiaaiAdacaaIPaaaaa@57CD@

где

                                                         K= 1 ρ+1 ϵ p+pρρ (ρ+1) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacqGHsisldaWcaaqaaiaaigdaaeaacqaHbpGCcqGHRaWkcaaIXaaa aiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8x9di=aaSaaaeaacaWGWbGaey4kaSIaamiCaiabeg8aYjabgkHi Tiabeg8aYbqaaiaaiIcacqaHbpGCcqGHRaWkcaaIXaGaaGykamaaCa aaleqabaGaaGOmaaaaaaGccaaISaaaaa@594F@

                       S( w 1 , w 2 ,t,ϵ)= 1 ρ+1 w 1 w 2 +ϵ pρ+p2ρ (ρ+1) 2 w 1 w 2 +ϵ pρψ+pψ+p ψ (ρ+1) 2 w 1 2 ϵ pρψ+pψ+p ψ (ρ+1) 2 w 1 2 w 2 +ϵ ρ (ρ+1) 2 w 1 w 2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadEhadaWgaaWc baGaaGOmaaqabaGccaaISaGaamiDaiaaiYcatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlaaiMcacaaI9aWaaSaa aeaacaaIXaaabaGaeqyWdiNaey4kaSIaaGymaaaacaWG3bWaaSbaaS qaaiaaigdaaeqaaOGaam4DamaaBaaaleaacaaIYaaabeaakiabgUca Riab=v=aYpaalaaabaGaamiCaiabeg8aYjabgUcaRiaadchacqGHsi slcaaIYaGaeqyWdihabaGaaGikaiabeg8aYjabgUcaRiaaigdacaaI PaWaaWbaaSqabeaacaaIYaaaaaaakiaadEhadaWgaaWcbaGaaGymaa qabaGccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9di=a aSaaaeaacaWGWbGaeqyWdiNaeqiYdKNaey4kaSIaamiCaiabeI8a5j abgUcaRiaadchaaeaacqaHipqEcaaIOaGaeqyWdiNaey4kaSIaaGym aiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaam4DamaaDaaaleaaca aIXaaabaGaaGOmaaaakiabgkHiTiab=v=aYpaalaaabaGaamiCaiab eg8aYjabeI8a5jabgUcaRiaadchacqaHipqEcqGHRaWkcaWGWbaaba GaeqiYdKNaaGikaiabeg8aYjabgUcaRiaaigdacaaIPaWaaWbaaSqa beaacaaIYaaaaaaakiaadEhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccaWG3bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIae8x9di=aaSaa aeaacqaHbpGCaeaacaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMcada ahaaWcbeqaaiaaikdaaaaaaOGaam4DamaaBaaaleaacaaIXaaabeaa kiaadEhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaISaaaaa@AC1C@

                                                 E i ( w 1 , w 2 ,t,ϵ)=ϵ pω ψ(ρ+1) w 1 pω ψ(ρ+1) w 1 w 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDai aaiYcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab =v=aYlaaiMcacaaI9aGae8x9di=aaeWaaeaadaWcaaqaaiaadchacq aHjpWDaeaacqaHipqEcaaIOaGaeqyWdiNaey4kaSIaaGymaiaaiMca aaGaam4DamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaam iCaiabeM8a3bqaaiabeI8a5jaaiIcacqaHbpGCcqGHRaWkcaaIXaGa aGykaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaam4DamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaiaai6caaaa@6D3B@

Согласно [4], многообразие стационарных положений устойчиво по отношению к переменным e i ,ξ,η,ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaakiaaiYcacqaH+oaEcaaISaGaeq4TdGMaaGil aiabeA7a6baa@4163@  в том и только в том случае, если устойчиво по отношению к переменной w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@ , а на это влияет коэффициент K= 1 ρ+1 ϵ p+ρ(p1) (ρ+1) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacqGHsisldaWcaaqaaiaaigdaaeaacqaHbpGCcqGHRaWkcaaIXaaa aiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8x9di=aaSaaaeaacaWGWbGaey4kaSIaeqyWdiNaaGikaiaadcha cqGHsislcaaIXaGaaGykaaqaaiaaiIcacqaHbpGCcqGHRaWkcaaIXa GaaGykamaaCaaaleqabaGaaGOmaaaaaaGccaaIUaaaaa@59B1@  Так как k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaaaaa@3A11@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  коэффициенты скоростей реакций, ρ= k 1 k 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypamaalaaabaGaam4AamaaBaaaleaacqGHsislcaaIXaaabeaaaOqa aiaadUgadaWgaaWcbaGaaGOmaaqabaaaaOGaaGOpaiaaicdaaaa@40D0@ , а ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8aaa@4402@  малый положительный параметр, K<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiY dacaaIWaaaaa@3A57@  и решение уравнения (3.15) устойчиво относительно w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@ . Отсюда следует, что многообразие стационарных положений устойчиво относительно w 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaaaaa@39EA@  и решение (3.8), (3.9) устойчиво.

4 Пример и численное сравнение решений

 Пусть в исходной системе (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (2.4) ρ= 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypamaalaaabaGaaGymaaqaaiaaiodaaaaaaa@3C16@ , σ= 1 16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ypamaalaaabaGaaGymaaqaaiaaigdacaaI2aaaaaaa@3CD7@ , ψ= 3 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ypamaalaaabaGaaG4maaqaaiaaisdaaaaaaa@3C27@ , ω= 1 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaG ypamaalaaabaGaaGymaaqaaiaaiIdaaaaaaa@3C28@ , p=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacaaIXaaaaa@3A7E@ . После применения вышеописанных методов и подстановки коэффициентов система на интегральном многообразии примет вид:

                                         w ˙ 1 =( w 2 1)( 15 9 w 1 3 25 9 w 1 2 + 5 9 w 2 w 1 2 +2 w 1 1 4 ), w 1 (0,ϵ)=1ϵ 1 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaiIcacaWG3bWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaaGymaiaaiMcacaaIOaWaaSaaaeaaca aIXaGaaGynaaqaaiaaiMdaaaGaam4DamaaDaaaleaacaaIXaaabaGa aG4maaaakiabgkHiTmaalaaabaGaaGOmaiaaiwdaaeaacaaI5aaaai aadEhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkdaWcaaqa aiaaiwdaaeaacaaI5aaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGcca WG3bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaa dEhadaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiaaigdaae aacaaI0aaaaiaaiMcacaaISaGaam4DamaaBaaaleaacaaIXaaabeaa kiaaiIcacaaIWaGaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfiGae8x9diVaaGykaiaai2dacaaIXaGaeyOeI0Iae8x9 di=aaSaaaeaacaaIXaaabaGaaGinaaaacaaISaaaaa@719E@

                                                         w ˙ 2 = w 1 ( w 2 1) 8 , w 2 (0,ϵ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Dayaaca WaaSbaaSqaaiaaikdaaeqaaOGaaGypamaalaaabaGaeyOeI0Iaam4D amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG3bWaaSbaaSqaaiaaik daaeqaaOGaeyOeI0IaaGymaiaaiMcaaeaacaaI4aaaaiaaiYcacaWG 3bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaIPaGa aGypaiaaicdacaaIUaaaaa@5719@

Рисунки 4.1, 4.2 отображают численные сравнения решений исходной и конечной систем, то есть до преобразований и после применения методов, при значении малого параметра ϵ=0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aiaai6cacaaIXaaaaa@46F6@ .

  

Figure 1: Сравнение решений для первого уравнения задачи до и после построения интегрального многообразия при ϵ=0,1

Fig. 4.1. Comparison of solutions for the first equation of the problem before and after constructing the integral varieties for ϵ=0,1

 

Figure 2: Сравнение решений для второго уравнения задачи до и после построения интегрального многообразия при ϵ=0,1

Fig. 4.2. Comparison of solutions for the second equation of the problem before and after constructing the integral varieties for ϵ=0,1

  

Заключение

 Данная статья включает в себя применение методов декомпозиции и интегральных многообразий к модели из второго случая, описанного в фундаментальной монографии Mathematical Biology. Метод декомпозиции сокращает размерность исходной системы, метод интегральных многообразий вводит так называемые многообразия, существенно упрощающие сложность вычислительных операций. Сравнение численных решений задач при значении малого параметра ϵ=0,1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF1pG8caaI9aGaaGim aiaaiYcacaaIXaaaaa@46F4@ =0,1 приводится графически.

×

About the authors

Mikhail A. Smetannikov

Samara National Research University

Author for correspondence.
Email: ssmetannikoff@gmail.com

postgraduate student of the Department of Differential Equations and Control Theory

Russian Federation, Samara

References

  1. Sobolev V.A., Shchepakina E.A. Reduction of models and critical phenomena in macrokinetics. Мoscow: FIZMATLIT, 2010, 320 p. Available at: https://elibrary.ru/item.asp?id=21326259. EDN: https://elibrary.ru/ryrtfh. (In Russ.)
  2. Murray J.D. Mathematical Biology I. An Introduction. New York: Springer, 2001, 551 p. DOI: https://doi.org/10.1007/b98868.
  3. Voropaeva N.V., Sobolev V.A. Geometric decomposition of singularly perturbed systems. Мoscow: FIZMATLIT, 2009, 256 p. Available at: https://elibrary.ru/item.asp?id=15211477. EDN: https://elibrary.ru/muwrwb. (In Russ.)
  4. Strygin V.V., Sobolev V.A. Separation of motions by the method of integral manifolds. Мoscow: Nauka, 1988, 256 p. Available at: https://elibrary.ru/item.asp?id=30130147. EDN: https://elibrary.ru/zjiugb. (In Russ.)
  5. Goldshtein V.M., Sobolev V.A. Qualitative analysis of singularly perturbed systems. Novosibirsk: In-t matematiki AN SSSR, Sib. otd-nie, 1988, 154 p. Available at: https://elibrary.ru/item.asp?id=48397980. EDN: https://elibrary.ru/ruopbm. (In Russ.)
  6. Shchepakina E.A. Integral manifolds, duck trajectories and heat explosion. Vestnik of Samara University, 1995. Special edition. P. 10–19. (In Russ.)
  7. Shchepakina E., Sobolev V. Integral manifolds, canards and black swans. Nonlinear Analysis: Theory, Methods & Applications, 2001, vol. 44, issue 7, pp. 897–908. DOI: https://doi.org/10.1016/S0362-546X(99)00312-0.
  8. Sobolev V.A. Integral manifolds and decomposition of singulary perturbed system. Systems & Control Letters, 1984, vol. 5, issue 3, pp. 169–179. DOI: https://doi.org/10.1016/S0167-6911(84)80099-7.
  9. Mitropolskiy U.A., Lykova O.B. Integral manifolds in nonlinear mechanics. Moscow: Nauka, 1973, 512 p. Available at: https://reallib.org/reader?file=789024&ysclid=lnslze77hh615738. (In Russ.)
  10. Knobloch H.-W., Aulbach B. Singular perturbations and integral manifolds. Journal of Mathematical and Physical Sciences, 1984, vol. 18, issue 5, pp. 415–424. Available at: https://zbmath.org/0587.34044.
  11. Seiler N., Jung M.J., Koch-Weser J. Enzyme-activated Irreversible Inhibitors. Amsterdam: Elsevier/North-Holland, 1978, 426 p.
  12. Walsh C.T. Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annual Review of Biochemistry, 1984, vol. 53, pp. 493–535. DOI: https://doi.org/10.1146/annurev.bi.53.070184.002425.
  13. Berding C., Keymer A.E., Murray J.D., Slater A.F.G. The population dynamics of acquired immunity to helminth infections. Journal of Theoretical Biology, 1986, vol. 122, issue 4, pp. 459–471. DOI: https://doi.org/10.1016/S0022-5193(86)80186-2.
  14. Bobylev N.A., Emelyanov S.V., Korovin S.K. Geometric methods in variational problems. Moscow: Magistr, 1998, 658 p. (In Russ.)
  15. Emelyanov S.V., Korovin S.K., Mamedov I.V. Structural transformations and spatial decomposition of discrete controlled systems: quasi-decoupling method. Tekhn. kibern., 1986, no. 6, pp. 118–128. (In Russ.)
  16. Korovin S.K., Mamedov I.G., Mamedova A.P. Uniform over a small parameter stability and stabilization of discrete singularly perturbed dynamic systems. Tekhn. kibern., 1989, no. 1, pp. 21–29. (In Russ.)
  17. Tikhonov A.N. Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik. Novaya Seriya, 1952, vol. 31 (73), pp. 575–586. Available at: https://www.mathnet.ru/rus/sm5548. (In Russ.)
  18. Zadiraka K.V. On the nonlocal integral manifold of an irregularly perturbed differential system. Ukrainian Mathematical Journal, 1965, vol. 17, no. 1, pp. 47–63. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 4.1. Comparison of solutions for the first equation of the problem before and after constructing the integral varieties for

Download (51KB)
3. Fig. 4.2. Comparison of solutions for the second equation of the problem before and after constructing the integral varieties for

Download (53KB)

Copyright (c) 2023 Smetannikov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».