A non-local problem with integral conditions of the first kind for the string vibration equation

Cover Page

Cite item

Full Text

Abstract

The article considers a problem with integral nonlocal conditions of the first kind. The main goal is to prove the unique solvability of a nonlocal problem with integral conditions of the 1st kind, if the kernels of these conditions depend not only on the spatial variable, but also on time. The equivalence of a nonlocal problem with integral conditions of the 1st kind and a nonlocal problem with integral conditions of the 2nd kind is shown. Restrictions on the input data are obtained to ensure the uniqueness of a generalized solution to the problem posed.

Full Text

1 Постановка задачи

Рассмотрим в области Q=(0,l)×(0,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2 dacaaIOaGaaGimaiaaiYcacaWGSbGaaGykaiabgEna0kaaiIcacaaI WaGaaGilaiaadsfacaaIPaaaaa@432F@ , где l,T<, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaaiY cacaWGubGaaGipaiabg6HiLkaaiYcaaaa@3D74@  уравнение

                                                         u tt (a(x,t) u x ) x =f(x,t)(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccqGHsislcaaIOaGaamyyaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabe aakiaaiMcadaWgaaWcbaGaamiEaaqabaGccaaI9aGaamOzaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaaGikaiaaigdacaaIPaaaaa@4DB5@

и поставим следующую задачу: найти в области Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@38DD@  решение уравнения (1), удовлетворяющее начальным данным

                                                       u(x,0)=ϕ(x), u t (x,0)=ψ(x)(2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabew9aMjaaiIcacaWG 4bGaaGykaiaaiYcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikai aadIhacaaISaGaaGimaiaaiMcacaaI9aGaeqiYdKNaaGikaiaadIha caaIPaGaaGikaiaaikdacaaIPaaaaa@4F8D@

и нелокальным условиям

                                              0 l K 1 (x,t)u(x,t)dx= h 1 (t), 0 l K 2 (x,t)u(x,t)dx= h 2 (t).(3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGaamiA amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcada WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaa i2dacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPa GaaGOlaiaaiIcacaaIZaGaaGykaaaa@66E3@

Будем считать, что a(x,t)>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOpaiaaicdaaaa@3E80@  в Q ¯ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGrbaaamaaBaaaleaacaWGubaabeaaaaa@39F3@ .

Особенность поставленной задачи заключается не только в том, что условия (3) являются нелокальными интегральными условиями первого рода, но и в том, что их ядра K i (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3E0C@  зависят и от переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ .

Напомним, что нелокальными условиями принято называть соотношения, связывающие значения искомого в области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@  решения на некотором внутреннем многообразии и в точках границы области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3995@ .

В случае одной пространственной переменной нелокальные интегральные условия могут быть представлены следующим соотношением:

                                                 αu(x,t)+β u x (x,t)+λ 0 l K(x,t)u(x,t)dx=0.(*) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaeqOSdiMa amyDamaaBaaaleaacaWG4baabeaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaey4kaSIaeq4UdW2aa8qmaeqaleaacaaIWaaabaGaamiB aaqdcqGHRiI8aOGaam4saiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIha caaI9aGaaGimaiaai6cacaaIOaGaaGOkaiaaiMcaaaa@5E0B@

Если α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@39A8@  не обращаются в ноль одновременно, то условие называется интегральным условием второго рода.

Если α=β=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiabek7aIjaai2dacaaIWaGaaGilaaaa@3E45@  то условие называется интегральным условием первого рода. [3]

К настоящему времени имеется значительное количество статей, посвященых исследованию нелокальных задач с интегральными условиями [5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 8; 11]. Разработаны методы исследования разрешимости нелокальной задачи с интегральными условиями второго рода [2; 5; 10]. Если в () β0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE HiQiaaiMcacaaIGaGaeqOSdiMaeyiyIKRaaGimaaaa@3F27@ , то эффективным оказался метод, впервые реализованный в [4] для многомерного уравнения. Если же в () α=β=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE HiQiaaiMcacaaIGaGaeqySdeMaaGypaiabek7aIjaai2dacaaIWaaa aa@408D@ , то есть нелокальные условия первого рода, при обосновании рассуждения возникает много трудностей, отмеченных и в статьях [2; 6; 9]. Одним из способов преодолеть возникающие трудности является сведение условий первого рода к условиям второго рода, причем так, чтобы они оказались эквивалентными. Условия на входные данные, обеспечивающие возможность этой процедуры, отражены в следующей лемме.

Лемма. Пусть

                                          null

и выполняются условия согласования

                                                  0lKi(x,0)ϕ(x)dx=hi(0),0l[Ki(x,0)ψ(x)+Kit(x,0)ϕ(x)]dx=h'i(0).(4)

Тогда нелокальные условия первого рода (3) эквивалентны нелокальным условиям второго рода

                                   ux(0,t)=α11u(0,t)+α12u(l,t)+0lP1(x,t)u(x,t)dx+20lP2(x,t)ut(x,t)dx+G1(t),ux(l,t)=α21u(0,t)+α22u(l,t)+0lP3(x,t)u(x,t)dx+20lP4(x,t)ut(x,t)dx+G2(t),(5)

где α ij , P i (x,t), G i (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgacaWGQbaabeaakiaaiYcacaWGqbWaaSbaaSqaaiaa dMgaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaam 4ramaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaaaaa@4930@  выражаются через K i (x,t),a(x,t),f(x,t), h i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcaca WGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaamiAamaa BaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@4E90@  и их производные.

Доказательство. Пусть u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@  удовлетворяет уравнению (1) и условиям (2), (3). Дифференцируя равенство (3) дважды по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ , получим

                                         0 l ( K 1 (x,t) u tt (x,t)+2 K 1t (x,t) u t (x,t)+ K 1tt (x,t)u(x,t))dx=h " 1 (t), 0 l ( K 2 (x,t) u tt (x,t)+2 K 2t (x,t) u t (x,t)+ K 2tt (x,t)u(x,t))dx=h " 2 (t). (6) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIca caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bWaaSbaaSqaaiaadshacaWG0baabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaaGOmaiaadUeadaWgaa WcbaGaaGymaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHRaWkcaWGlbWaaSbaaSqaaiaaigdacaWG0bGa amiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcacaWGKbGaamiEaiaa i2dacaWGObGaaGOiamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaaIOaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0bGaamiD aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaaik dacaWGlbWaaSbaaSqaaiaaikdacaWG0baabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIaam4samaaBaaaleaa caaIYaGaamiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIPaGa amizaiaadIhacaaI9aGaamiAaiaaikcadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiDaiaaiMcacaaIUaaaaiaaiIcacaaI2aGaaGykaaaa @A80F@

Теперь выразим из уравнения (1) u tt (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaaaa@3F3A@  и подставим в (6), получим

                                     0l(K1(x,t)(f+(a(x,t)ux)x)+2K1t(x,t)ut(x,t)+K1tt(x,t)u(x,t))dx=h"1(t),0l(K2(x,t)(f+(a(x,t)ux)x)+2K2t(x,t)ut(x,t)+K2tt(x,t)u(x,t))dx=h"2(t).(7)

Проинтегрируем теперь слагаемые, содержащие u xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4bGaamiEaaqabaaaaa@3B27@  дважды, и получим

                               0lK1(x,t)(a(x,t)ux)xdx=K1(l,t)a(l,t)ux(l,t)K1(0,t)a(0,t)ux(0,t)++K1x(0,t)a(0,t)u(0,t)K1x(l,t)a(l,t)u(l,t)+0l(K1x(x,t)a(x,t))xu(x,t)dx,0lK2(x,t)(a(x,t)ux)xdx=K2(l,t)a(l,t)ux(l,t)K2(0,t)a(0,t)ux(0,t)++K2x(0,t)a(o,t)u(0,t)K2x(l,t)a(l,t)u(l,t)+0l(K2x(x,t)a(x,t))xu(x,t)dx.(8)      

Подставим (8) в (7)

                                0 l K 1 (x,t)fdx+ K 1 (l,t)a(l,t) u x (l,t) K 1 (0,t)a(0,t) u x (0,t)+ K 1x (0,t)a(0,t)u(0,t) K 1x (l,t)a(l,t)u(l,t)+ 0 l ( K 1x (x,t)a(x,t)) x u(x,t)dx+2 0 l K 1t (x,t) u t (x,t)dx+ + 0 l K 1tt (x,t)u(x,t)dx=h " 1 (t), 0 l K 2 (x,t)fdx+ K 2 (l,t)a(l,t) u x (l,t) K 2 (0,t)a(0,t) u x (0,t)+ K 2x (0,t)a(0,t)u(0,t) K 2x (l,t)a(l,t)u(l,t)+ 0 l K 2x (x,t)a(x,t )) x u(x,t)dx+2 0 l K 2t (x,t) u t (x,t)dx+ + 0 l K 2tt (x,t)u(x,t)dx=h " 2 (t). (9) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4s amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamOzaiaadsgacaWG4bGaey4kaSIaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaaiI cacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baa beaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyOeI0Iaam4sam aaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa ey4kaSIaam4samaaBaaaleaacaaIXaGaamiEaaqabaGccaaIOaGaaG imaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaaGimaiaaiYcacaWG 0bGaaGykaiaadwhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgk HiTaqaaiabgkHiTiaadUeadaWgaaWcbaGaaGymaiaadIhaaeqaaOGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG1bGaaGikaiaadYgacaaISaGaamiDaiaa iMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIOaGaam4samaaBaaaleaacaaIXaGaamiEaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiMcadaWgaaWcbaGaamiEaaqabaGccaWG1bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiabgUcaRiaaik dadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWa aSbaaSqaaiaaigdacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacqGHRaWkaeaacqGHRaWkda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSba aSqaaiaaigdacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa dsgacaWG4bGaaGypaiaadIgacaaIIaWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGilaaqaamaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadAgacaWGKbGaamiEaiab gUcaRiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiY cacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG0bGaaGyk aiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcaca WG0bGaaGykaiabgkHiTiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaaGimaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGa aGimaiaaiYcacaWG0bGaaGykaiabgUcaRiaadUeadaWgaaWcbaGaaG OmaiaadIhaaeqaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG HbGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaaic dacaaISaGaamiDaiaaiMcacqGHsislaeaacqGHsislcaWGlbWaaSba aSqaaiaaikdacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyDaiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaam4samaaBaaaleaacaaIYaGa amiEaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadggaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWgaaWcbaGaamiE aaqabaGccaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKb GaamiEaiabgUcaRiaaikdadaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdacaWG0baabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG0baa beaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacq GHRaWkaeaacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniab gUIiYdGccaWGlbWaaSbaaSqaaiaaikdacaWG0bGaamiDaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaadIgacaaIIaWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGOlaaaacaaI OaGaaGyoaiaaiMcaaaa@71CD@

Так как

                                                    Δ K 1 (0,t) K 2 (l,t) K 1 (l,t) K 2 (0,t))0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaey yyIORaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaI XaaabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaam4samaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa aGykaiabgcMi5kaaicdacaaISaaaaa@56BA@

то (9) можно разрешить относительно u x (0,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaaa aa@3E02@  и u x (l,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaaa aa@3E39@ . Выразим их из (9) и получим нелокальные условия второго рода:

                                                u x (0,t)= α 11 u(0,t)+ α 12 u(l,t)+ 0 l P 1 (x,t)u(x,t)dx+ +2 0 l P 2 (x,t) u t (x,t)dx+ G 1 (t), u x (l,t)= α 21 u(0,t)+ α 22 u(l,t)+ 0 l P 3 (x,t)u(x,t)dx+ +2 0 l P 4 (x,t) u t (x,t)dx+ G 2 (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamyDamaaBaaaleaacaWG4baabeaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaaGypaiabeg7aHnaaBaaaleaacaaIXaGaaGymaa qabaGccaWG1bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGHRaWk cqaHXoqydaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamyDaiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaamiuamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaamizaiaadIhacqGHRaWkaeaacqGHRaWkca aIYaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiu amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaBaaaleaacaWG0baabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacqGHRaWkcaWGhbWaaSbaaSqaai aaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaadwhadaWg aaWcbaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykai aai2dacqaHXoqydaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyDaiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqySde2aaSbaaS qaaiaaikdacaaIYaaabeaakiaadwhacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadcfadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaey4kaScabaGaey4kaSIaaGOmamaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadcfadaWgaaWcbaGaaG inaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhadaWg aaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aadsgacaWG4bGaey4kaSIaam4ramaaBaaaleaacaaIYaaabeaakiaa iIcacaWG0bGaaGykaiaaiYcaaaaaaa@BF80@

где

                                        α 11 := 1 Δ [ K 1x (0,t) K 2 (l,t) K 1 (l,t) K 2x (0,t)], α 12 := a(l,t) a(0,t)Δ [ K 1x (l,t) K 2 (l,t) K 1 (l,t) K 2x (l,t)], P 1 (x,t):= 1 a(0,t)Δ [a(x,t) K 1x (x,t)) x K 2 (l,t) (a(x,t) K 2x (x,t)) x K 2 (l,t)+ + K 1tt (x,t) K 2 (l,t) K 1 (l,t) K 2tt (x,t)], P 2 (x,t):= 1 a(0,t)Δ [ K 1t (x,t) K 2 (l,t) K 1 (l,t) K 2t (x,t)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaGaeqySde2aaSbaaSqaaiaaigdacaaIXaaabeaakiaaiQdacaaI 9aWaaSaaaeaacaaIXaaabaGaeyiLdqeaaiaaiUfacaWGlbWaaSbaaS qaaiaaigdacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGilai aadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYa GaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2fa caaISaaabaGaeqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaaiQ dacaaI9aGaeyOeI0YaaSaaaeaacaWGHbGaaGikaiaadYgacaaISaGa amiDaiaaiMcaaeaacaWGHbGaaGikaiaaicdacaaISaGaamiDaiaaiM cacqGHuoaraaGaaG4waiaadUeadaWgaaWcbaGaaGymaiaadIhaaeqa aOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGlbWaaSbaaSqaai aaikdaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHsisl caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaISaGaam iDaiaaiMcacaWGlbWaaSbaaSqaaiaaikdacaWG4baabeaakiaaiIca caWGSbGaaGilaiaadshacaaIPaGaaGyxaiaaiYcaaeaacaWGqbWaaS baaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca caaI6aGaaGypamaalaaabaGaaGymaaqaaiaadggacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiabgs5aebaacaaIBbGaamyyaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIXaGaamiEaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWgaaWc baGaamiEaaqabaGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacqGHsislcaaIOaGaamyyaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaGaam iEaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMcadaWg aaWcbaGaamiEaaqabaGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaG ikaiaadYgacaaISaGaamiDaiaaiMcacqGHRaWkaeaacqGHRaWkcaWG lbWaaSbaaSqaaiaaigdacaWG0bGaamiDaaqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiBaiaaiYcacaWG0bGaaGykaiabgkHiTiaadUeadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadUea daWgaaWcbaGaaGOmaiaadshacaWG0baabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGyxaiaaiYcaaeaacaWGqbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aGaaG ypamaalaaabaGaaGymaaqaaiaadggacaaIOaGaaGimaiaaiYcacaWG 0bGaaGykaiabgs5aebaacaaIBbGaam4samaaBaaaleaacaaIXaGaam iDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadUeadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykai abgkHiTiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiBaiaa iYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaiaadshaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGilaaaaaaa@0A87@

                                            G 1 (t):= 1 a(0,t)Δ ( 0 l [ K 1 (x,t) K 2 (l,t) K 1 (l,t) K 2 (x,t)]fdx+ + h 1tt (t) K 2 (l,t) K 1 (l,t) h 2tt (t)), α 21 := a(0,t) a(l,t)Δ [ K 1x (0,t) K 2 (0,t) K 1 (0,t) K 2x (0,t)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadEeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMca caaI6aGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadggacaaIOa GaaGimaiaaiYcacaWG0bGaaGykaiabgs5aebaacaaIOaWaa8qmaeqa leaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadUeadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa dUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiYcacaWG0b GaaGykaiabgkHiTiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGa amiBaiaaiYcacaWG0bGaaGykaiaadUeadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2facaWGMbGaamiz aiaadIhacqGHRaWkaeaacqGHRaWkcaWGObWaaSbaaSqaaiaaigdaca WG0bGaamiDaaqabaGccaaIOaGaamiDaiaaiMcacaWGlbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHsi slcaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaISaGa amiDaiaaiMcacaWGObWaaSbaaSqaaiaaikdacaWG0bGaamiDaaqaba GccaaIOaGaamiDaiaaiMcacaaIPaGaaGilaaqaaiabeg7aHnaaBaaa leaacaaIYaGaaGymaaqabaGccaaI6aGaaGypamaalaaabaGaamyyai aaiIcacaaIWaGaaGilaiaadshacaaIPaaabaGaamyyaiaaiIcacaWG SbGaaGilaiaadshacaaIPaGaeyiLdqeaaiaaiUfacaWGlbWaaSbaaS qaaiaaigdacaWG4baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilai aadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaa iIcacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYa GaamiEaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2fa caaISaaaaaaa@AE74@

                                       α 22 := 1 Δ [ K 1x (l,t) K 2 (0,t) K 1 (0,t) K 2x (l,t)], P 3 (x,t):= 1 a(l,t)Δ [(a(x,t) K 1x (x,t )) x K 2 (0,t) (a(x,t) K 2x (x,t)) x K 1 (0,t)+ + K 1tt (x,t) K 2 (0,t) K 1 (0,t) K 2tt (x,t)], P 4 (x,t):= 1 a(l,t)Δ [ K 1t (x,t) K 2 (0,t) K 1 (0,t) K 2t (x,t)], G 2 (t):= 1 a(l,t)Δ ( 0 l [ K 1 (x,t) K 2 (0,t) K 1 (0,t) K 2 (x,t)]fdx h 1tt (t) K 2 (0,t)+ K 1 (0,t) h 2tt (t)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaGaeqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaaiQdacaaI 9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaeyiLdqeaaiaaiUfacaWGlb WaaSbaaSqaaiaaigdacaWG4baabeaakiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaale aacaaIYaGaamiEaaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGyk aiaai2facaaISaaabaGaamiuamaaBaaaleaacaaIZaaabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGOoaiaai2dadaWcaaqaaiaa igdaaeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGHuo araaGaaG4waiaaiIcacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWGlbWaaSbaaSqaaiaaigdacaWG4baabeaakiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4baabeaakiaa dUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYcacaWG0b GaaGykaiabgkHiTiaaiIcacaWGHbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaWGlbWaaSbaaSqaaiaaikdacaWG4baabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4baabeaa kiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiYcaca WG0bGaaGykaiabgUcaRaqaaiabgUcaRiaadUeadaWgaaWcbaGaaGym aiaadshacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa Gaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIXaaabeaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaGa amiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIDbGaaGilaaqaaiaadcfadaWgaaWcbaGaaGinaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaiQdacaaI9aWaaSaaaeaacaaIXa aabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyiLdqea aiaaiUfacaWGlbWaaSbaaSqaaiaaigdacaWG0baabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaa kiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBa aaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa am4samaaBaaaleaacaaIYaGaamiDaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2facaaISaaabaGaam4ramaaBaaaleaacaaI YaaabeaakiaaiIcacaWG0bGaaGykaiaaiQdacaaI9aWaaSaaaeaaca aIXaaabaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaeyiL dqeaaiaaiIcadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIBbGaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaam4samaaBaaaleaacaaIYaaabeaakiaaiI cacaaIWaGaaGilaiaadshacaaIPaGaeyOeI0Iaam4samaaBaaaleaa caaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam4sam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGyxaiaadAgacaWGKbGaamiEaiabgkHiTaqaaiabgkHiTiaadI gadaWgaaWcbaGaaGymaiaadshacaWG0baabeaakiaaiIcacaWG0bGa aGykaiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiabgUcaRiaadUeadaWgaaWcbaGaaGymaaqabaGc caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadIgadaWgaaWcbaGaaG OmaiaadshacaWG0baabeaakiaaiIcacaWG0bGaaGykaiaaiMcacaaI Uaaaaaaa@273A@

Пусть теперь u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  решение уравнения (1), удовлетворяющее условиям (2) и (5). Домножим уравнение (1) на K 1 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3DD9@  и проинтегрируем по отрезку [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamiBaiaai2faaaa@3C34@ . Аналогичную процедуру проделаем с ядром K 2 (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@3DDA@ , получим

                                          0 l K 1 (x,t) u tt (x,t)dx 0 l K 1 (x,t)(a(x,t) u x ) x dx= 0 l K 1 (x,t)fdx, 0 l K 2 (x,t) u tt (x,t)dx 0 l K 2 (x,t)(a(x,t) u x ) x dx= 0 l K 2 (x,t)fdx. (10) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGKbGaamiEaiabgkHiTmaapedabeWcba GaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiIcacaWGHb GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaa dIhaaeqaaOGaaGykamaaBaaaleaacaWG4baabeaakiaadsgacaWG4b GaaGypamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadAgacaWGKbGaamiEaiaaiYcaaeaadaWdXaqabSqaaiaa icdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdaae qaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqa aiaadshacaWG0baabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamizaiaadIhacqGHsisldaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaIOaGaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyDamaaBaaaleaacaWG4baabeaakiaaiMcada WgaaWcbaGaamiEaaqabaGccaWGKbGaamiEaiaai2dadaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGlbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGMbGaamiz aiaadIhacaaIUaaaaiaaiIcacaaIXaGaaGimaiaaiMcaaaa@A905@

Подставим (8) в (10). Но тогда выполняются и равенства (6), из которых получены условия (5). Равенства (6) запишем в виде

                                                     0 l ( K 1 (x,t)u(x,t)) tt dxh " 1 (t)=0, 0 l ( K 2 (x,t)u(x,t)) tt dxh " 2 (t)=0. (11) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIca caWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI PaWaaSbaaSqaaiaadshacaWG0baabeaakiaadsgacaWG4bGaeyOeI0 IaamiAaiaaikcadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaa iMcacaaI9aGaaGimaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaaIOaGaam4samaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG0bGaamiDaaqa baGccaWGKbGaamiEaiabgkHiTiaadIgacaaIIaWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaaicdacaaIUaaaaiaa iIcacaaIXaGaaGymaiaaiMcaaaa@7369@

Эти условия можно свернуть таким образом:

                                                    2 t 2 0 l K 1 (x,t)u(x,t)dx h 1 (t) =0, 2 t 2 0 l K 2 (x,t)u(x,t)dx h 2 (t) =0. (12) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOa IyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcdaWadaqaamaapedabe WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaeyOeI0Ia amiAamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaaGaay 5waiaaw2faaiaai2dacaaIWaGaaGilaaqaamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGcdaWadaqaamaapedabeWcbaGaaGimaaqaaiaadYga a0Gaey4kIipakiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaadsgacaWG4bGaeyOeI0IaamiAamaaBaaaleaacaaIYa aabeaakiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai2dacaaI WaGaaGOlaaaacaaIOaGaaGymaiaaikdacaaIPaaaaa@7A52@

Из условий согласования (4) вытекают начальные условия

                                                  0 l K i (x,0)u(x,0)dx= h i (0), t 0 l K i (x,t)u(x,t)dx | t=0 = h i (0),i=1,2. (13) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaG ykaiaadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaadsgacaWG 4bGaaGypaiaadIgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaaGimai aaiMcacaaISaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa amaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUeada WgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4b GaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqaaOGaaGypaiqa dIgagaqbamaaBaaaleaacaWGPbaabeaakiaaiIcacaaIWaGaaGykai aaiYcacqGHaiIicaWGPbGaaGypaiaaigdacaaISaGaaGOmaiaai6ca aaGaaGikaiaaigdacaaIZaGaaGykaaaa@7478@

Задача Коши (12), (13) имеет единственное решение

                                                          0 l K 1 (x,t)u(x,t)dx= h 1 (t), 0 l K 2 (x,t)u(x,t)dx= h 2 (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadUea daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaaGypaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDai aaiMcacaaISaaabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGH RiI8aOGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaamizaiaadIhacaaI9aGaamiAamaaBaaaleaacaaIYaaabeaaki aaiIcacaWG0bGaaGykaiaaiYcaaaaaaa@64CC@

что и означает выполнение условий (3).

2 Единственность решения задачи

Теперь рассмотрим частный случай этой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (3), в которой ядро представлено в виде K i (x,t)= Φ i (x) Ψ i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGypaiabfA6agnaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaG ykaiabfI6aznaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aaaa@48E4@ . Тогда условия (3) можно записать таким образом:

                                                    0 l Φ i (x) Ψ i (t)u(x,t)dx= h i (t),i=1,2.(14) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeuOPdy0aaSbaaSqaaiaa dMgaaeqaaOGaaGikaiaadIhacaaIPaGaeuiQdK1aaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamizaiaadIhacaaI9aGaamiAamaaBaaaleaaca WGPbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacaWGPbGaaGypaiaa igdacaaISaGaaGOmaiaai6cacaaIOaGaaGymaiaaisdacaaIPaaaaa@5A4C@

Будем считать, что Ψ i (t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaGaeyiyIKRaaGim aaaa@3F99@  всюду в [0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamivaiaai2faaaa@3C1C@  и обозначим h i (t) Ψ i (t) = T i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGObWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaabaGa euiQdK1aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaIPaaaai aai2dacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaI Paaaaa@46B9@ , тогда (14) можно представить так:

                                                         0 l Φ 1 (x)u(x,t)dx= T 1 (t), 0 l Φ 2 (x)u(x,t)dx= T 2 (t). (15) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiabfA6a gnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiaadwhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaaGypaiaa dsfadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaISa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaeuOP dy0aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaamyDai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaaI9aGa amivamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai6 caaaGaaGikaiaaigdacaaI1aGaaGykaaaa@657B@

Условия (5) для этого частного случая выглядят следующим образом:

                                           u x (0,t)= α 11 u(0,t)+ α 12 u(l,t)+ 0 l P 1 (x,t)u(x,t)dx+ G 1 (t), u x (l,t)= α 21 u(0,t)+ α 22 u(l,t)+ 0 l P 2 (x,t)u(x,t)dx+ G 2 (t), (16) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaaGimaiaaiYca caWG0bGaaGykaiaai2dacqaHXoqydaWgaaWcbaGaaGymaiaaigdaae qaaOGaamyDaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIa eqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadwhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadcfadaWgaaWcbaGaaGymaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaadsgacaWG4bGaey4kaSIaam4ramaaBaaale aacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaacaWG1bWa aSbaaSqaaiaadIhaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiM cacaaI9aGaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaadwha caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiabgUcaRiabeg7aHnaaBa aaleaacaaIYaGaaGOmaaqabaGccaWG1bGaaGikaiaadYgacaaISaGa amiDaiaaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWGKbGaamiEaiabgUcaRiaadEeadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiDaiaaiMcacaaISaaaaiaaiIcacaaIXaGaaGOnai aaiMcaaaa@99AB@

где

                                             α 11 := 1 Δ [ Φ 1 (0) Φ 2 (l) Φ 1 (l) Φ 2 (0)], α 12 := a(l,t) a(0,t)Δ [ Φ 1 (l) Φ 2 (l) Φ 1 (l) Φ 2 (l)], P 1 (x,t):= a x a(0,t)Δ [ Φ 1 Φ 2 (l) Φ 1 (l) Φ 2 ], G 1 (t):= 1 a(0,t)Δ ( 0 l [ Φ 1 (l) Φ 2 (x) Φ 1 (x) Φ 2 (l)]fdx T 1 (t) Φ 2 (l)+ Φ 1 (l) T 2 (t)), α 21 := a(0,t) a(l,t)Δ [ Φ 1 (0) Φ 2 (0) Φ 1 (0) Φ 2 (0)], α 22 := 1 Δ [ Φ 1 (l) Φ 2 (0) Φ 1 (0) Φ 2 (l)], P 2 (x,t):= a x a(l,t)Δ [ Φ 1 Φ 2 (0) Φ 1 (0) Φ 2 ], G 2 (t):= 1 a(l,t)Δ ( 0 l [ Φ 1 (0) Φ 2 (x) Φ 1 (x) Φ 2 (0)]fdx T 1 (t) Φ 2 (0)+ Φ 1 (0) T 2 (t)), Δ:= Φ 1 (0) Φ 2 (l) Φ 1 (l) Φ 2 (0)0. (17) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabSqaaa aaaeaacqaHXoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaaGOoaiaa i2dadaWcaaqaaiaaigdaaeaacqGHuoaraaGaaG4waiqbfA6agzaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaIPaGaeuOPdy0a aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaeyOeI0Iaeu OPdy0aaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGafuOP dyKbauaadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiMcaca aIDbGaaGilaaqaaiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGc caaI6aGaaGypaiabgkHiTmaalaaabaGaamyyaiaaiIcacaWGSbGaaG ilaiaadshacaaIPaaabaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaeyiLdqeaaiaaiUfacuqHMoGrgaqbamaaBaaaleaacaaIXa aabeaakiaaiIcacaWGSbGaaGykaiabfA6agnaaBaaaleaacaaIYaaa beaakiaaiIcacaWGSbGaaGykaiabgkHiTiabfA6agnaaBaaaleaaca aIXaaabeaakiaaiIcacaWGSbGaaGykaiqbfA6agzaafaWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaaGyxaiaaiYcaaeaaca WGqbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI6aGaaGypamaalaaabaGaamyyamaaBaaaleaacaWG4b aabeaaaOqaaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiab gs5aebaacaaIBbGafuOPdyKbauGbauaadaWgaaWcbaGaaGymaaqaba GccqqHMoGrdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiBaiaaiMca cqGHsislcqqHMoGrdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiBai aaiMcacuqHMoGrgaqbgaqbamaaBaaaleaacaaIYaaabeaakiaai2fa caaISaaabaGaam4ramaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGaamyyaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaeyiLdqeaaiaaiIcadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIBbGaeuOPdy0aaSba aSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGaeuOPdy0aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaeuOPdy0a aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGaeuOPdy0aaS baaSqaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaaGyxaiaadAga caWGKbGaamiEaiabgkHiTaqaaiabgkHiTiqadsfagaqbgaqbamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabfA6agnaaBaaa leaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiabgUcaRiabfA6agn aaBaaaleaacaaIXaaabeaakiaaiIcacaWGSbGaaGykaiqadsfagaqb gaqbamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiM cacaaISaaabaGaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaa iQdacaaI9aWaaSaaaeaacaWGHbGaaGikaiaaicdacaaISaGaamiDai aaiMcaaeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacqGH uoaraaGaaG4waiqbfA6agzaafaWaaSbaaSqaaiaaigdaaeqaaOGaaG ikaiaaicdacaaIPaGaeuOPdy0aaSbaaSqaaiaaikdaaeqaaOGaaGik aiaaicdacaaIPaGaeyOeI0IaeuOPdy0aaSbaaSqaaiaaigdaaeqaaO GaaGikaiaaicdacaaIPaGafuOPdyKbauaadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaaGimaiaaiMcacaaIDbGaaGilaaqaaiabeg7aHnaaBa aaleaacaaIYaGaaGOmaaqabaGccaaI6aGaaGypaiabgkHiTmaalaaa baGaaGymaaqaaiabgs5aebaacaaIBbGafuOPdyKbauaadaWgaaWcba GaaGymaaqabaGccaaIOaGaamiBaiaaiMcacqqHMoGrdaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiMcacqGHsislcqqHMoGrdaWgaa WcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiMcacuqHMoGrgaqbamaa BaaaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiaai2facaaISa aabaGaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGOoaiaai2dadaWcaaqaaiaadggadaWgaaWcba GaamiEaaqabaaakeaacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacqGHuoaraaGaaG4waiqbfA6agzaafyaafaWaaSbaaSqaaiaaig daaeqaaOGaeuOPdy0aaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicda caaIPaGaeyOeI0IaeuOPdy0aaSbaaSqaaiaaigdaaeqaaOGaaGikai aaicdacaaIPaGafuOPdyKbauGbauaadaWgaaWcbaGaaGOmaaqabaGc caaIDbGaaGilaaqaaiaadEeadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiaadgga caaIOaGaamiBaiaaiYcacaWG0bGaaGykaiabgs5aebaacaaIOaWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabfA6a gnaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiabfA6agn aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGykaiabgkHiTiab fA6agnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiabfA 6agnaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiaai2fa caWGMbGaamizaiaadIhacqGHsislaeaacqGHsislceWGubGbauGbau aadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacqqHMoGr daWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiMcacqGHRaWkcq qHMoGrdaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiMcaceWG ubGbauGbauaadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiM cacaaIPaGaaGilaaqaaiabgs5aejaaiQdacaaI9aGaeuOPdy0aaSba aSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaIPaGaeuOPdy0aaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadYgacaaIPaGaeyOeI0IaeuOPdy0a aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGaeuOPdy0aaS baaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaIPaGaeyiyIKRaaGim aiaai6caaaGaaGikaiaaigdacaaI3aGaaGykaaaa@9F31@

Введем понятие обобщенного решения. Следуя известной процедуре [1], считая что u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@3901@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  классическое решение, умножим равенство (1) на гладкую функцию, проинтегрируем по области Q T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGubaabeaaaaa@39E2@  и, подставляя краевые условия, получим равенство:

                                         0 T 0 l [ u t v t +a u x v x ]dxdt+ 0 τ α 21 v(l,t)a(l,t) v t (0,t)dt+ + 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt+ 0 τ 0 l P 2 (x,t)v(l,t)a(l,t)u(x,t)dxdt 0 τ α 11 v(0,t)a(0,t) v t (0,t)dt 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt 0 τ 0 l P 1 (x,t)v(0,t)a(0,t)u(x,t)dxdt= = 0 l v(x,0)ψ(x)dx+ 0 T 0 l v(x,t)fdxdt. (18) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTi aadwhadaWgaaWcbaGaamiDaaqabaGccaWG2bWaaSbaaSqaaiaadsha aeqaaOGaey4kaSIaamyyaiaadwhadaWgaaWcbaGaamiEaaqabaGcca WG2bWaaSbaaSqaaiaadIhaaeqaaOGaaGyxaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGymaaqabaGccaWG2bGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRaqaai abgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGa eqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadAhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiBai aaiYcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qmaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaam iEaiaadsgacaWG0bGaeyOeI0cabaGaeyOeI0Yaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaaWcbaGaaGymai aaigdaaeqaaOGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaBaaale aacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamiz aiaadshacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGa aGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTaqaai abgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWa a8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca aIWaGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai2daaeaacaaI9a Waa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODaiaa iIcacaWG4bGaaGilaiaaicdacaaIPaGaeqiYdKNaaGikaiaadIhaca aIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWG2bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGMbGa amizaiaadIhacaWGKbGaamiDaiaai6caaaGaaGikaiaaigdacaaI4a GaaGykaaaa@2794@

Определение. Обобщенным решением задачи (1),(2), (16) будем называть функцию u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI4maaa@3E96@   W 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyicI4Saam 4vamaaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIcacaWGrbWaaSba aSqaaiaadsfaaeqaaOGaaGykaaaa@3F5F@ , удовлетворяющую условию u(x,0)=ϕ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaaicdacaaIPaGaaGypaiabew9aMjaaiIcacaWG 4bGaaGykaaaa@41C4@  и тождеству

                                    0 T 0 l [ u t v t +a u x v x ]dxdt 0 T v(l,t)a(l,t) u x (l,t)dt+ 0 T v(0,t)a(0,t) u x (0,t)dt= = 0 l v(x,0)ψ(x)dx+ 0 T 0 l v(x,t)fdxdt (19) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaapedabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaapeda beWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfacqGHsislca WG1bWaaSbaaSqaaiaadshaaeqaaOGaamODamaaBaaaleaacaWG0baa beaakiabgUcaRiaadggacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaam ODamaaBaaaleaacaWG4baabeaakiaai2facaWGKbGaamiEaiaadsga caWG0bGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaa iIcacaWGSbGaaGilaiaadshacaaIPaGaamyDamaaBaaaleaacaWG4b aabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadsha cqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGcca WG2bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaai2da aeaacaaI9aWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO GaamODaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaeqiYdKNaaGik aiaadIhacaaIPaGaamizaiaadIhacqGHRaWkdaWdXaqabSqaaiaaic daaeaacaWGubaaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWG SbaaniabgUIiYdGccaWG2bGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGMbGaamizaiaadIhacaWGKbGaamiDaaaacaaIOaGaaGymaiaa iMdacaaIPaaaaa@A2E1@

для любой функции v(x,t) W ^ 2 1 ( Q T ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI48aaecaaeaacaWGxbaa caGLcmaadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIOaGaamyuam aaBaaaleaacaWGubaabeaakiaaiMcaaaa@452D@ ,

                                              где W ^ 2 1 ( Q T )={v(x,t):v(x,t) W 2 1 ( Q T ),v(x,T)=0}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaado dbcaWG0qGaamyneiaayIW7caaMe8UaaGjbVpaaHaaabaGaam4vaaGa ayPadaWaa0baaSqaaiaaikdaaeaacaaIXaaaaOGaaGikaiaadgfada WgaaWcbaGaamivaaqabaGccaaIPaGaaGypaiaaiUhacaWG2bGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaI6aGaamODaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaeyicI4Saam4vamaaDaaaleaacaaIYaaa baGaaGymaaaakiaaiIcacaWGrbWaaSbaaSqaaiaadsfaaeqaaOGaaG ykaiaaiYcacaWG2bGaaGikaiaadIhacaaISaGaamivaiaaiMcacaaI 9aGaaGimaiaai2hacaaIUaaaaa@63F2@

Теорема. Если выполнены условия

                                                 a(x,t), a t (x,t)C( Q ¯ T ), Φ i C 2 [0,l], Ψ i (t)0 t[0,T] α 12 a(0,t)+ α 21 a(l,t)=0, α 11 a(0,0) ξ 1 2 +2 α 12 a(0,0) ξ 1 ξ 2 α 22 a(l,0) ξ 2 2 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaa dggadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgIGiolaadoeacaaIOaWaa0aaaeaacaWGrbaaamaaBaaa leaacaWGubaabeaakiaaiMcacaaISaaabaGaeuOPdy0aaSbaaSqaai aadMgaaeqaaOGaeyicI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaa iUfacaaIWaGaaGilaiaadYgacaaIDbGaaGilaiabfI6aznaaBaaale aacaWGPbaabeaakiaaiIcacaWG0bGaaGykaiabgcMi5kaaicdacaaI GaGaaGiiaiaaiccacqGHaiIicaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaeaacqaHXoqydaWgaaWcbaGaaGymaiaaikda aeqaaOGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaS IaeqySde2aaSbaaSqaaiaaikdacaaIXaaabeaakiaadggacaaIOaGa amiBaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaGaaGilaaqaaiabeg 7aHnaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbGaaGikaiaaicda caaISaGaaGimaiaaiMcacqaH+oaEdaqhaaWcbaGaaGymaaqaaiaaik daaaGccqGHRaWkcaaIYaGaeqySde2aaSbaaSqaaiaaigdacaaIYaaa beaakiaadggacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiabe67a4n aaBaaaleaacaaIXaaabeaakiabe67a4naaBaaaleaacaaIYaaabeaa kiabgkHiTiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHb GaaGikaiaadYgacaaISaGaaGimaiaaiMcacqaH+oaEdaqhaaWcbaGa aGOmaaqaaiaaikdaaaGccqGHLjYScaaIWaGaaGilaaaaaaa@A2D1@

то существует не более одного обобщенного решения поставленной задачи.

Доказательство. Покажем, что существует не более одного решения задачи. Предположим, что существует два решения u 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaaaaa@39E8@  и u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIYaaabeaaaaa@39E9@ . Тогда u= u 1 u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyDamaaBaaa leaacaaIYaaabeaaaaa@3E82@  удовлетворяет тождеству:

                                         0 T 0 l [ u t v t +a u x v x ]dxdt+ 0 τ α 21 v(l,t)a(l,t) v t (0,t)dt+ + 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt+ 0 τ 0 l P 2 (x,t)v(l,t)a(l,t)u(x,t)dxdt 0 τ α 11 v(0,t)a(0,t) v t (0,t)dt 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt 0 τ 0 l P 1 (x,t)v(0,t)a(0,t)u(x,t)dxdt=0. (20) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiabgkHiTi aadwhadaWgaaWcbaGaamiDaaqabaGccaWG2bWaaSbaaSqaaiaadsha aeqaaOGaey4kaSIaamyyaiaadwhadaWgaaWcbaGaamiEaaqabaGcca WG2bWaaSbaaSqaaiaadIhaaeqaaOGaaGyxaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGymaaqabaGccaWG2bGa aGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRaqaai abgUcaRmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGa eqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadAhacaaIOaGaam iBaiaaiYcacaWG0bGaaGykaiaadggacaaIOaGaamiBaiaaiYcacaWG 0bGaaGykaiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIOaGaamiBai aaiYcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qmaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaam iEaiaadsgacaWG0bGaeyOeI0cabaGaeyOeI0Yaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaaWcbaGaaGymai aaigdaaeqaaOGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaBaaale aacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamiz aiaadshacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGa aGikaiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgkHiTaqaai abgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWa a8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca aIWaGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai2dacaaIWaGaaG OlaaaacaaIOaGaaGOmaiaaicdacaaIPaaaaa@0675@

Выберем в тождестве (18) с f(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E84@  и ψ(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaIPaGaaGypaiaaicdaaaa@3DB8@  

                                                      v(x,t)= τ t u(x,η)dη,0tτ, 0,τtT. (21) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaaceaabaqbaeqabiqa aaqaamaapedabeWcbaGaeqiXdqhabaGaamiDaaqdcqGHRiI8aOGaam yDaiaaiIcacaWG4bGaaGilaiabeE7aOjaaiMcacaWGKbGaeq4TdGMa aGilaiaaicdacqGHKjYOcaWG0bGaeyizImQaeqiXdqNaaGilaaqaai aaicdacaaISaGaeqiXdqNaeyizImQaamiDaiabgsMiJkaadsfacaaI UaaaaaGaay5EaaGaaGikaiaaikdacaaIXaGaaGykaaaa@6099@

Проинтегрируем по частям некоторые слагаемые:

                                              0 τ 0 l u t udxdt= 1 2 0 l u 2 (x,τ)dx, 0 τ 0 l a u x v x dxdt= 1 2 ( 0 τ 0 l a t v x 2 dxdt+ 0 l a(x,0) v x 2 (x,0)dx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabgkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8 aOWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDam aaBaaaleaacaWG0baabeaakiaadwhacaWGKbGaamiEaiaadsgacaWG 0bGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qmae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaWGKb GaamiEaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Ga ey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipaki aadggacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaamODamaaBaaaleaa caWG4baabeaakiaadsgacaWG4bGaamizaiaadshacaaI9aGaeyOeI0 YaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIOaWaa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaamOD amaaDaaaleaacaWG4baabaGaaGOmaaaakiaadsgacaWG4bGaamizai aadshacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIi YdGccaWGHbGaaGikaiaadIhacaaISaGaaGimaiaaiMcacaWG2bWaa0 baaSqaaiaadIhaaeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaaGim aiaaiMcacaWGKbGaamiEaiaaiMcacaaIUaaaaaaa@9367@

Подставляя в (20), получим:

                                   null

Проинтегрируем по частям и подставим в (22) такие интегралы:

                                    0 τ α 11 v(0,t)a(0,t) v t (0,t)dt= 1 2 α 11 a(0,0) v 2 (0,0) 1 2 0 τ α 11 a t (0,t) v 2 (0,t)dt, 0 τ α 12 v(0,t)a(0,t) v t (l,t)dt= α 12 a(0,0)v(0,0)v(l,0) 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt 0 τ α 12 a(0,t) v t (0,t)v(l,t)dt, 0 τ α 22 v(l,t)a(l,t) v t (l,t)dt= 1 2 α 22 a(l,0) v 2 (l,0) 1 2 0 τ α 22 a t (l,t) v 2 (l,t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaH XoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaamODamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaamizaiaadshacaaI9aGaeyOeI0YaaSaaaeaa caaIXaaabaGaaGOmaaaacqaHXoqydaWgaaWcbaGaaGymaiaaigdaae qaaOGaamyyaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaamODamaa CaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPa GaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXaqabSqaaiaa icdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIXa GaaGymaaqabaGccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYca aeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiabeg 7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG2bGaaGikaiaaicda caaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdacaaISaGaamiDai aaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadYgacaaI SaGaamiDaiaaiMcacaWGKbGaamiDaiaai2dacqGHsislcqaHXoqyda WgaaWcbaGaaGymaiaaikdaaeqaaOGaamyyaiaaiIcacaaIWaGaaGil aiaaicdacaaIPaGaamODaiaaiIcacaaIWaGaaGilaiaaicdacaaIPa GaamODaiaaiIcacaWGSbGaaGilaiaaicdacaaIPaGaeyOeI0Yaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWgaa WcbaGaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaWG0baabeaa kiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaadsha caaIPaGaamizaiaadshacqGHsislaeaacqGHsisldaWdXaqabSqaai aaicdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaI XaGaaGOmaaqabaGccaWGHbGaaGikaiaaicdacaaISaGaamiDaiaaiM cacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaaicdacaaISaGa amiDaiaaiMcacaWG2bGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca WGKbGaamiDaiaaiYcaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaD a0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGcca WG2bGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaa dYgacaaISaGaamiDaiaaiMcacaWG2bWaaSbaaSqaaiaadshaaeqaaO GaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaai2da cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg7aHnaaBaaale aacaaIYaGaaGOmaaqabaGccaWGHbGaaGikaiaadYgacaaISaGaaGim aiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgaca aISaGaaGimaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa amaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeqySde 2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaa dsgacaWG0bGaaGOlaaaaaaa@2171@

Учитывая условия теоремы α 12 a(0,t)+ α 21 a(l,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIYaaabeaakiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaGaaGymaa qabaGccaWGHbGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaaI9aGa aGimaaaa@4AA1@ , получим:

                                  0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx= 0 τ 0 l a t v x 2 dxdt+[ α 11 a(0,0) v 2 (0,0)+ +2 α 12 a(0,0)v(0,0)v(l,0) α 22 a(l,0) v 2 (l,0)]+ 0 τ α 11 a t (0,t) v 2 (0,t)dt 0 τ α 22 a t (l,t) v 2 (l,t)dt+2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ + P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt. (23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4w aiaadwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacq aHepaDcaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaamODamaaDaaaleaacaWG4baabaGaaGOmaaaakiaaiIcaca WG4bGaaGilaiaaicdacaaIPaGaaGyxaiaadsgacaWG4bGaaGypaiab gkHiTmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamyyamaaBaaa leaacaWG0baabeaakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaa GccaWGKbGaamiEaiaadsgacaWG0bGaey4kaSIaaG4waiabeg7aHnaa BaaaleaacaaIXaGaaGymaaqabaGccaWGHbGaaGikaiaaicdacaaISa GaaGimaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa icdacaaISaGaaGimaiaaiMcacqGHRaWkaeaacqGHRaWkcaaIYaGaeq ySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadggacaaIOaGaaGim aiaaiYcacaaIWaGaaGykaiaadAhacaaIOaGaaGimaiaaiYcacaaIWa GaaGykaiaadAhacaaIOaGaamiBaiaaiYcacaaIWaGaaGykaiabgkHi Tiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHbGaaGikai aadYgacaaISaGaaGimaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaa aOGaaGikaiaadYgacaaISaGaaGimaiaaiMcacaaIDbGaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccqaHXoqydaWg aaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBaaaleaacaWG0baabe aakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamODamaaCaaaleqa baGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizai aadshacqGHsislaeaacqGHsisldaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqaba GccaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadYgacaaISaGa amiDaiaaiMcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiaaikdadaWd XaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiabeg7aHnaaBa aaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaadshaaeqa aOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaaic dacaaISaGaamiDaiaaiMcacaWG2bGaaGikaiaadYgacaaISaGaamiD aiaaiMcacaWGKbGaamiDaiabgkHiTiaaikdadaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaaiUfacqGHsislcaWGqbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaGik aiaaicdacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaaicdacaaISa GaamiDaiaaiMcacqGHRaWkaeaacqGHRaWkcaWGqbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG2bGaaG ikaiaadYgacaaISaGaamiDaiaaiMcacaWGHbGaaGikaiaadYgacaaI SaGaamiDaiaaiMcacaaIDbGaamyDaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaamizaiaadIhacaWGKbGaamiDaiaai6caaaGaaGikaiaa ikdacaaIZaGaaGykaaaa@1B76@

Из равенства (23) вытекает неравенство и, если учесть условие теоремы α 11 a(0,0) ξ 1 2 +2 α 12 a(0,0) ξ 1 ξ 2 α 22 a(l,0) ξ 2 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaaigdacaaIXaaabeaakiaadggacaaIOaGaaGimaiaaiYca caaIWaGaaGykaiabe67a4naaDaaaleaacaaIXaaabaGaaGOmaaaaki abgUcaRiaaikdacqaHXoqydaWgaaWcbaGaaGymaiaaikdaaeqaaOGa amyyaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaeqOVdG3aaSbaaS qaaiaaigdaaeqaaOGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggacaaIOa GaamiBaiaaiYcacaaIWaGaaGykaiabe67a4naaDaaaleaacaaIYaaa baGaaGOmaaaakiabgwMiZkaaicdaaaa@60D8@ , получим:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt + 0 τ α 11 a t (0,t) v 2 (0,t)dt + + 0 τ α 22 a t (l,t) v 2 (l,t)dt +2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt + +2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt . (24) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfa caWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiabgUcaRiaadggacaaIOaGaamiEaiaaiYcacaaIWaGa aGykaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaaIWaGaaGykaiaai2facaWGKbGaamiEaiabgsMiJoaa emaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbWaaSba aSqaaiaadshaaeqaaOGaamODamaaDaaaleaacaWG4baabaGaaGOmaa aakiaadsgacaWG4bGaamizaiaadshaaiaawEa7caGLiWoacqGHRaWk daabdaqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaeqySde2aaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWc baGaamiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadA hadaahaaWcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGa aGykaiaadsgacaWG0baacaGLhWUaayjcSdGaey4kaScabaGaey4kaS YaaqWaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipa kiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGHbWaaSbaaS qaaiaadshaaeqaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMcacaWG 2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgacaaISaGaamiDai aaiMcacaWGKbGaamiDaaGaay5bSlaawIa7aiabgUcaRiaaikdadaab daqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeq ySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadggadaWgaaWcbaGa amiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhaca aIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhacaaIOaGaamiBaiaa iYcacaWG0bGaaGykaiaadsgacaWG0baacaGLhWUaayjcSdGaey4kaS cabaGaey4kaSIaaGOmamaaemaabaWaa8qmaeqaleaacaaIWaaabaGa eqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaani abgUIiYdGccaaIBbGaeyOeI0IaamiuamaaBaaaleaacaaIXaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadsha caaIPaGaey4kaSIaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaG yxaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaamizaiaadshaaiaawEa7caGLiWoacaaIUaaaaiaaiIcacaaIYa GaaGinaiaaiMcaaaa@F8EE@

Обратимся теперь к правой части (24) Коши, Коши MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  Буняковского и

                                                    v 2 ( x i ,t)2l 0 l v x 2 (x,t)dx+ 2 l 0 l v 2 (x,t)dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqa aOGaaGilaiaadshacaaIPaGaeyizImQaaGOmaiaadYgadaWdXaqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG2bWaa0baaSqaaiaa dIhaaeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WGKbGaamiEaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaaWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaale qabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiz aiaadIhacaaISaaaaa@5E66@

вывод которой показан в [3, с. 107]. Учитывая сказанное выше, получим оценки для таких слагаемых правой части неравенства (24):

                                     0 τ α 11 a t (0,t) v 2 (0,t)dt 0 τ α 11 a t (0,t) v 2 (0,t) dt 0 τ | α 11 || a t (0,t)| v 2 (0,t)dt A 1 0 τ v 2 (0,t)dt2l A 1 0 τ 0 l v x 2 (x,t)dxdt+ 2 A 1 l 0 τ 0 l v 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGccqaHXoqydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamyyamaaBa aaleaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa amODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaads hacaaIPaGaamizaiaadshaaiaawEa7caGLiWoacqGHKjYOdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaaemaabaGaeqySde 2aaSbaaSqaaiaaigdacaaIXaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaaGa ay5bSlaawIa7aiaadsgacaWG0bGaeyizIm6aa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaSbaaSqaaiaa igdacaaIXaaabeaakiaaiYhacaaI8bGaamyyamaaBaaaleaacaWG0b aabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaGiFaiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaaGimaiaaiYcacaWG0bGaaG ykaiaadsgacaWG0bGaeyizImkabaGaeyizImQaamyqamaaBaaaleaa caaIXaaabeaakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRi I8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGil aiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBaiaadg eadaWgaaWcbaGaaGymaaqabaGcdaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkdaWcaaqaaiaaikdacaWGbbWaaSbaaSqaaiaaigdaaeqaaaGc baGaamiBaaaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIi pakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaaaa@C79D@

где A 1 := b 1 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaamOyamaaBaaaleaacaaI XaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41F9@

 

                                          2 0 τ α 12 a t (0,t)v(0,t)v(l,t)dt 2 0 τ α 12 a t (0,t)v(0,t)v(l,t) dt 2 0 τ | α 12 || a t (0,t)||v(0,t)||v(l,t)|dt A 2 0 τ [ v 2 (0,t)+ v 2 (l,t)]dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaikdadaabdaqaamaapedabeWcbaGaaGimaaqaaiabes8a0bqd cqGHRiI8aOGaeqySde2aaSbaaSqaaiaaigdacaaIYaaabeaakiaadg gadaWgaaWcbaGaamiDaaqabaGccaaIOaGaaGimaiaaiYcacaWG0bGa aGykaiaadAhacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaadAhaca aIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadsgacaWG0baacaGLhWUa ayjcSdGaeyizImQaaGOmamaapedabeWcbaGaaGimaaqaaiabes8a0b qdcqGHRiI8aOWaaqWaaeaacqaHXoqydaWgaaWcbaGaaGymaiaaikda aeqaaOGaamyyamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaG ilaiaadshacaaIPaGaamODaiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaaacaGLhWUaay jcSdGaamizaiaadshacqGHKjYOaeaacqGHKjYOcaaIYaWaa8qmaeqa leaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaS baaSqaaiaaigdacaaIYaaabeaakiaaiYhacaaI8bGaamyyamaaBaaa leaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaG iFaiaaiYhacaWG2bGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI 8bGaaGiFaiaadAhacaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaaiY hacaWGKbGaamiDaiabgsMiJkaadgeadaWgaaWcbaGaaGOmaaqabaGc daWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaaiUfaca WG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaamiD aiaaiMcacqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikai aadYgacaaISaGaamiDaiaaiMcacaaIDbGaamizaiaadshacaaISaaa aaaa@B397@

где A 2 := b 2 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaaiQdacaaI9aGaamOyamaaBaaaleaacaaI YaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41FB@

 

                                      0 τ α 22 a t (l,t) v 2 (l,t)dt 0 τ α 22 a t (l,t) v 2 (l,t) dt 0 τ | α 22 || a t (l,t)| v 2 (l,t)dt A 3 0 τ v 2 (l,t)dt2l A 3 0 τ 0 l v x 2 (x,t)dxdt+ 2 A 3 l 0 τ 0 l v 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGccqaHXoqydaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamyyamaaBa aaleaacaWG0baabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGa amODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGSbGaaGilaiaads hacaaIPaGaamizaiaadshaaiaawEa7caGLiWoacqGHKjYOdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaaemaabaGaeqySde 2aaSbaaSqaaiaaikdacaaIYaaabeaakiaadggadaWgaaWcbaGaamiD aaqabaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaiaadAhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaGykaaGa ay5bSlaawIa7aiaadsgacaWG0bGaeyizIm6aa8qmaeqaleaacaaIWa aabaGaeqiXdqhaniabgUIiYdGccaaI8bGaeqySde2aaSbaaSqaaiaa ikdacaaIYaaabeaakiaaiYhacaaI8bGaamyyamaaBaaaleaacaWG0b aabeaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaGiFaiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiaadsgacaWG0bGaeyizImkabaGaeyizImQaamyqamaaBaaaleaa caaIZaaabeaakmaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRi I8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGSbGaaGil aiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBaiaadg eadaWgaaWcbaGaaG4maaqabaGcdaWdXaqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkdaWcaaqaaiaaikdacaWGbbWaaSbaaSqaaiaaiodaaeqaaaGc baGaamiBaaaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIi pakmaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadAha daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaadsgacaWG4bGaamizaiaadshacaaISaaaaaaa@C92A@

где A 3 := c 2 a 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaakiaaiQdacaaI9aGaam4yamaaBaaaleaacaaI YaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGOmaaqabaGccaaISa aaaa@41FD@

 

                               2 0 τ 0 l [ P 1 (x,t)v(0,t)a(0,t)+ P 2 (x,t)v(l,t)a(l,t)]u(x,t)dxdt 2 0 τ 0 l | P 1 (x,t)v(0,t)a(0,t)u(x,t)|dxdt+2 0 τ 0 l | P 2 (x,t)v(l,t)a(l,t)u(x,t)|dxdt 2 0 τ 0 l | P 1 (x,t)||v(0,t)||a(0,t)||u(x,t)|dxdt+2 0 τ 0 l | P 2 (x,t)||v(l,t)||a(l,t)||u(x,t)|dxdt D 1 l 0 τ v 2 (l,t)dt+ D 2 l 0 τ v 2 (0,t)dt+( D 1 + D 2 ) 0 τ 0 l u 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaaGOmamaaemaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqha niabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYd GccaaIBbGaeyOeI0IaamiuamaaBaaaleaacaaIXaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaaIWaGaaGilai aadshacaaIPaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGa ey4kaSIaamiuamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaamODaiaaiIcacaWGSbGaaGilaiaadshacaaI PaGaamyyaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaaGyxaiaadw hacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamiz aiaadshaaiaawEa7caGLiWoacqGHKjYOaeaacqGHKjYOcaaIYaWaa8 qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiuamaaBaaale aacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamOD aiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamyyaiaaiIcacaaIWa GaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHRaWkcaaIYa Waa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiuamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa amODaiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamyyaiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHKjYOae aacqGHKjYOcaaIYaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniab gUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca aI8bGaamiuamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGiFaiaaiYhacaWG2bGaaGikaiaaicdacaaISa GaamiDaiaaiMcacaaI8bGaaGiFaiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaiaaiYhacaaI8bGaamyDaiaaiIcacaWG4bGaaGilai aadshacaaIPaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHRaWk caaIYaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaI8bGaamiu amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiaaiYhacaWG2bGaaGikaiaadYgacaaISaGaamiDaiaa iMcacaaI8bGaaGiFaiaadggacaaIOaGaamiBaiaaiYcacaWG0bGaaG ykaiaaiYhacaaI8bGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGiFaiaadsgacaWG4bGaamizaiaadshacqGHKjYOaeaacqGHKj YOcaWGebWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaG OmaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaadsha cqGHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaamiBamaapedabe WcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqa baGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaamizai aadshacqGHRaWkcaaIOaGaamiramaaBaaaleaacaaIXaaabeaakiab gUcaRiaadseadaWgaaWcbaGaaGOmaaqabaGccaaIPaWaa8qmaeqale aacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGccaWG1bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsga caWG0bGaaGilaaaaaaa@4FF7@

где D 1 := d 1 a 1 , D 2 := d 2 a 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaamizamaaBaaaleaacaaI XaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGymaaqabaGccaaISa GaamiramaaBaaaleaacaaIYaaabeaakiaaiQdacaaI9aGaamizamaa BaaaleaacaaIYaaabeaakiabgwSixlaadggadaWgaaWcbaGaaGymaa qabaGccaaIUaaaaa@4BF7@

Преобразуем (24), учитывая оценки, написанные выше:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt +2l A 1 0 τ 0 l v x 2 (x,t)dxdt+ + 2 A 1 l 0 τ 0 l v 2 (x,t)dxdt+ A 2 0 τ [ v 2 (0,t)+ v 2 (l,t)]dt+2l A 3 0 τ 0 l v x 2 (x,t)dxdt+ + 2 A 3 l 0 τ 0 l v 2 (x,t)dxdt+ D 1 l 0 τ v 2 (l,t)dt+ D 2 l 0 τ v 2 (0,t)dt+ +( D 1 + D 2 ) 0 τ 0 l u 2 (x,t)dxdt. (25) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaWaa8qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4w aiaadwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacq aHepaDcaaIPaGaey4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaamODamaaDaaaleaacaWG4baabaGaaGOmaaaakiaaiIcaca WG4bGaaGilaiaaicdacaaIPaGaaGyxaiaadsgacaWG4bGaeyizIm6a aqWaaeaadaWdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadggadaWg aaWcbaGaamiDaaqabaGccaWG2bWaa0baaSqaaiaadIhaaeaacaaIYa aaaOGaamizaiaadIhacaWGKbGaamiDaaGaay5bSlaawIa7aiabgUca RiaaikdacaWGSbGaamyqamaaBaaaleaacaaIXaaabeaakmaapedabe WcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaI WaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaDaaaleaacaWG4baaba GaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaa dIhacaWGKbGaamiDaiabgUcaRaqaaiabgUcaRmaalaaabaGaaGOmai aadgeadaWgaaWcbaGaaGymaaqabaaakeaacaWGSbaaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiabgUcaRiaadgeadaWgaaWcbaGaaGOmaaqabaGcdaWdXaqa bSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaaiUfacaWG2bWaaW baaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMca cqGHRaWkcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadYgaca aISaGaamiDaiaaiMcacaaIDbGaamizaiaadshacqGHRaWkcaaIYaGa amiBaiaadgeadaWgaaWcbaGaaG4maaqabaGcdaWdXaqabSqaaiaaic daaeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaa GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamiz aiaadshacqGHRaWkaeaacqGHRaWkdaWcaaqaaiaaikdacaWGbbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamiBaaaadaWdXaqabSqaaiaaicda aeaacqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadAhadaahaaWcbeqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG4bGaamizaiaadshacq GHRaWkcaWGebWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaaleqaba GaaGOmaaaakiaaiIcacaWGSbGaaGilaiaadshacaaIPaGaamizaiaa dshacqGHRaWkcaWGebWaaSbaaSqaaiaaikdaaeqaaOGaamiBamaape dabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaaCaaa leqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaam izaiaadshacqGHRaWkaeaacqGHRaWkcaaIOaGaamiramaaBaaaleaa caaIXaaabeaakiabgUcaRiaadseadaWgaaWcbaGaaGOmaaqabaGcca aIPaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWd XaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG1bWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG KbGaamiEaiaadsgacaWG0bGaaGOlaaaacaaIOaGaaGOmaiaaiwdaca aIPaaaaa@1C49@

Введем некоторые обозначения:

                                     C 1 =2l( A 1 + A 3 ), C 2 = A 2 + D 2 l, C 3 = A 2 + D 1 l, C 4 = D 1 + D 2 , C 5 = 2 l ( A 1 + A 3 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacaaIYaGaamiBaiaaiIcacaWGbbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyqamaaBaaaleaacaaIZa aabeaakiaaiMcacaaISaGaam4qamaaBaaaleaacaaIYaaabeaakiaa i2dacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamiramaaBa aaleaacaaIYaaabeaakiaadYgacaaISaGaam4qamaaBaaaleaacaaI Zaaabeaakiaai2dacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaamiramaaBaaaleaacaaIXaaabeaakiaadYgacaaISaGaam4qamaa BaaaleaacaaI0aaabeaakiaai2dacaWGebWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamiramaaBaaaleaacaaIYaaabeaakiaaiYcacaWG dbWaaSbaaSqaaiaaiwdaaeqaaOGaaGypamaalaaabaGaaGOmaaqaai aadYgaaaGaaGikaiaadgeadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGykaiaai6caaaa@65DB@

Преобразуем (25):

                                        0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l a t v x 2 dxdt + C 1 0 τ 0 l v x 2 (x,t)dxdt+ + C 2 0 τ v 2 (0,t)dt+ C 3 0 τ v 2 (l,t)dt+ C 4 0 τ 0 l u 2 (x,t)dxdt+ + C 5 0 τ 0 l v 2 (x,t)dxdt. (26) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfa caWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiabgUcaRiaadggacaaIOaGaamiEaiaaiYcacaaIWaGa aGykaiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaaIWaGaaGykaiaai2facaWGKbGaamiEaiabgsMiJoaa emaabaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcda WdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGHbWaaSba aSqaaiaadshaaeqaaOGaamODamaaDaaaleaacaWG4baabaGaaGOmaa aakiaadsgacaWG4bGaamizaiaadshaaiaawEa7caGLiWoacqGHRaWk caWGdbWaaSbaaSqaaiaaigdaaeqaaOWaa8qmaeqaleaacaaIWaaaba GaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEaiaadsgacaWG 0bGaey4kaScabaGaey4kaSIaam4qamaaBaaaleaacaaIYaaabeaakm aapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamODamaa CaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshacaaIPa GaamizaiaadshacqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOWa a8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGccaWG2bWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadYgacaaISaGaamiDaiaaiMca caWGKbGaamiDaiabgUcaRiaadoeadaWgaaWcbaGaaGinaaqabaGcda WdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadwhadaahaaWcbeqaai aaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadsgacaWG 4bGaamizaiaadshacqGHRaWkaeaacqGHRaWkcaWGdbWaaSbaaSqaai aaiwdaaeqaaOWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIi YdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWGKbGaamiEaiaadsgacaWG0bGaaGOlaaaacaaIOaGaaGOmai aaiAdacaaIPaaaaa@CC47@

Используя неравенство, полученное в [2], получим:

                                                0 τ v 2 (0,t)dt2l 0 τ 0 l v x 2 (x,t)dxdt+ 2 l 0 τ 0 l v 2 (x,t)dxdt, 0 τ v 2 (l,t)dt2l 0 τ 0 l v x 2 (x,t)dxdt+ 2 l 0 τ 0 l v 2 (x,t)dxdt, 0 τ 0 l v 2 (x,t)dxdt τ 2 0 τ 0 l u 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaamOD amaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaadshaca aIPaGaamizaiaadshacqGHKjYOcaaIYaGaamiBamaapedabeWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaamODamaaDaaaleaacaWG4baabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhaca WGKbGaamiDaiabgUcaRmaalaaabaGaaGOmaaqaaiaadYgaaaWaa8qm aeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWG2bWaaWbaaSqabeaacaaI YaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiEai aadsgacaWG0bGaaGilaaqaamaapedabeWcbaGaaGimaaqaaiabes8a 0bqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaakiaaiIcaca WGSbGaaGilaiaadshacaaIPaGaamizaiaadshacqGHKjYOcaaIYaGa amiBamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8 qmaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamODamaaDaaa leaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamizaiaadIhacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGOm aaqaaiaadYgaaaWaa8qmaeqaleaacaaIWaaabaGaeqiXdqhaniabgU IiYdGcdaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWG 2bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaWGKbGaamiEaiaadsgacaWG0bGaaGilaaqaamaapedabeWc baGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamODamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhacaWGKb GaamiDaiabgsMiJkabes8a0naaCaaaleqabaGaaGOmaaaakmaapeda beWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qmaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaamyDamaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamizaiaadIhaca WGKbGaamiDaiaai6caaaaaaa@D391@

Учитывая оценки, написанные выше, получим:

                                      0 l [ u 2 (x,τ)+a(x,0) v x 2 (x,0)]dx 0 τ 0 l ( a 2 + B 1 ) v x 2 (x,t)+ B 2 u 2 (x,t) dxdt,(27) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaamODamaa DaaaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaaic dacaaIPaGaaGyxaiaadsgacaWG4bGaeyizIm6aa8qmaeqaleaacaaI WaaabaGaeqiXdqhaniabgUIiYdGcdaWdXaqabSqaaiaaicdaaeaaca WGSbaaniabgUIiYdGcdaWadaqaaiaaiIcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabeaakiaaiM cacaWG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHRaWkcaWGcbWaaSbaaSqaaiaaikdaae qaaOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGil aiaadshacaaIPaaacaGLBbGaayzxaaGaamizaiaadIhacaWGKbGaam iDaiaaiYcacaaIOaGaaGOmaiaaiEdacaaIPaaaaa@7BBE@

где

                                           B 1 := C 1 +2l( C 2 + C 3 ), B 2 := max [0,T] { 2 l ( C 2 + C 3 ) τ 2 + C 4 + C 5 τ 2 }. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiQdacaaI9aGaam4qamaaBaaaleaacaaI XaaabeaakiabgUcaRiaaikdacaWGSbGaaGikaiaadoeadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOGa aGykaiaaiYcacaaIGaGaamOqamaaBaaaleaacaaIYaaabeaakiaaiQ dacaaI9aWaaybuaeqaleaacaaIBbGaaGimaiaaiYcacaWGubGaaGyx aaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI7bWaaSaaaeaacaaIYa aabaGaamiBaaaacaaIOaGaam4qamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadoeadaWgaaWcbaGaaG4maaqabaGccaaIPaGaeqiXdq3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaam4qamaaBaaaleaacaaI0aaa beaakiabgUcaRiaadoeadaWgaaWcbaGaaGynaaqabaGccqaHepaDda ahaaWcbeqaaiaaikdaaaGccaaI9bGaaGOlaaaa@6649@

Теперь введем функцию w(x,t)= 0 t u x dη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypamaapedabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaadwhadaWgaaWcbaGaamiEaaqaba GccaWGKbGaeq4TdGgaaa@4684@ . Тогда, используя преставления функции v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@3902@ , получим

                                           v x 2 (x,0)= w 2 (x,τ), v x (x,0)=w(x,τ), v x (x,t)=w(x,t)w(x,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaaicda caaIPaGaaGypaiaadEhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacqaHepaDcaaIPaGaaGilaiaaiccacaWG2bWaaSbaaSqa aiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaaGimaiaaiMcacaaI9a GaeyOeI0Iaam4DaiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaaI SaGaaGiiaiaadAhadaWgaaWcbaGaamiEaaqabaGccaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2dacaWG3bGaaGikaiaadIhacaaISaGa amiDaiaaiMcacqGHsislcaWG3bGaaGikaiaadIhacaaISaGaeqiXdq NaaGykaiaai6caaaa@6A35@

Тогда в (27) v x 2 (x,t)2 w 2 (x,t)+2 w 2 (x,τ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWG4baabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyizImQaaGOmaiaadEhadaahaaWcbeqaaiaaikdaaaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaaikdacaWG3bWa aWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiaai6caaaa@5096@  Подставляя это неравенство, получим:

                                0 l [ u 2 (x,τ)+a(x,0) w 2 (x,τ)]dx 0 τ 0 l 2( a 2 + B 1 )( w 2 (x,t)+ w 2 (x,τ))+ B 2 u 2 (x,t) dxdt.(28) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaamyyaiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaam4Damaa CaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiM cacaaIDbGaamizaiaadIhacqGHKjYOdaWdXaqabSqaaiaaicdaaeaa cqaHepaDa0Gaey4kIipakmaapedabeWcbaGaaGimaaqaaiaadYgaa0 Gaey4kIipakmaadmaabaGaaGOmaiaaiIcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabeaakiaaiM cacaaIOaGaam4DamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaey4kaSIaam4DamaaCaaaleqabaGaaGOmaa aakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMcacaaIPaGaey4kaSIa amOqamaaBaaaleaacaaIYaaabeaakiaadwhadaahaaWcbeqaaiaaik daaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaGaay5waiaaw2fa aiaadsgacaWG4bGaamizaiaadshacaaIUaGaaGikaiaaikdacaaI4a GaaGykaaaa@84A3@

Заметим, что w 2 (x,τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiabes8a0jaaiMca aaa@3ED3@  не зависит от t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  и a(x,t) a 0 >0 x,t Q ¯ T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyyzImRaamyyamaaBaaaleaa caaIWaaabeaakiaai6dacaaIWaGaaGiiaiaaiccacqGHaiIicaWG4b GaaGilaiaadshacqGHiiIZdaqdaaqaaiaadgfaaaWaaSbaaSqaaiaa dsfaaeqaaOGaaGOlaaaa@4B1E@  Тогда

                                      null

Выберем τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@39CC@  так, чтобы a 0 2τ( a 2 + B 1 )>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiabgkHiTiaaikdacqaHepaDcaaIOaGaamyy amaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkeadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGOpaiaaicdacaaIUaaaaa@455C@  Тoгда последнее слагаемое в (29) можно перенести в левую часть:

                                       0 l [ u 2 (x,τ)+ν w 2 (x,τ)]dx 0 τ 0 l 2( a 2 + B 1 ) w 2 (x,t)+ B 2 u 2 (x,t) dxdt,(30) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaaG4waiaadwhadaahaaWc beqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacqaHepaDcaaIPaGaey 4kaSIaeqyVd4Maam4DamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiabes8a0jaaiMcacaaIDbGaamizaiaadIhacqGHKjYOda WdXaqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipakmaapedabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakmaadmaabaGaaGOmaiaaiI cacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOqamaaBaaa leaacaaIXaaabeaakiaaiMcacaWG3bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkcaWGcbWaaSba aSqaaiaaikdaaeqaaOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaaacaGLBbGaayzxaaGaamizaiaa dIhacaWGKbGaamiDaiaaiYcacaaIOaGaaG4maiaaicdacaaIPaaaaa@7887@

где ν= a 0 2τ( a 2 + B 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaadggadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIYaGaeqiX dqNaaGikaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGcb WaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaai6caaaa@4659@  Выберем в (30) m=min{1;ν} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaWGTbGaamyAaiaad6gacaaI7bGaaGymaiaaiUdacqaH9oGBcaaI 9baaaa@41D7@  и M=max{2( a 2 + B 1 ); B 2 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaWGTbGaamyyaiaadIhacaaI7bGaaGOmaiaaiIcacaWGHbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamOqamaaBaaaleaacaaIXaaabe aakiaaiMcacaaI7aGaamOqamaaBaaaleaacaaIYaaabeaakiaai2ha caaISaaaaa@4848@  получим

                                           m 0 l [ u 2 (x,τ)+ w 2 (x,τ)]dxM 0 τ 0 l w 2 (x,t)+ u 2 (x,t) dxdt.(31) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaape dabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiUfacaWG1bWa aWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiabgUcaRiaadEhadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiE aiaaiYcacqaHepaDcaaIPaGaaGyxaiaadsgacaWG4bGaeyizImQaam ytamaapedabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qm aeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWaamWaaeaacaWG3b WaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHRaWkcaWG1bWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaacaWGKbGaamiEaiaa dsgacaWG0bGaaGOlaiaaiIcacaaIZaGaaGymaiaaiMcaaaa@704A@

Применив к последнему неравенству лемму Гронуолла, получим u(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E93@  в [0,τ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeqiXdqNaaGyxaiaaiYcaaaa@3DBE@  где τ< a 0 2( a 2 + B 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ipamaalaaabaGaamyyamaaBaaaleaacaaIWaaabeaaaOqaaiaaikda caaIOaGaamyyamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadkeada WgaaWcbaGaaGymaaqabaGccaaIPaaaaaaa@430B@ . Так же, как и в [1, с. 212], повторяя рассуждения для t[τ, τ 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacqaHepaDcaaISaGaeqiXdq3aaSbaaSqaaiaaigdaaeqa aOGaaGyxaaaa@4181@ , убедимся, что u(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGypaiaaicdaaaa@3E93@  на этом промежутке (τ τ 1 <T). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabes 8a0jabgsMiJkabes8a0naaBaaaleaacaaIXaaabeaakiaaiYdacaWG ubGaaGykaiaai6caaaa@41F3@  И так в конечное число шагов докажем обращение в нуль для всех t[0,T]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGOlaaaa@3F51@

Таким образом, доказано утверждение о том, что не может существовать более одного решения поставленной задачи. 

×

About the authors

Y. S. Buntova

Samara National Research University

Author for correspondence.
Email: ynbuntova@gmail.com
ORCID iD: 0009-0003-7786-8019

postgraduate student of the Department of Differential Equations and Control Theory

Russian Federation, Samara

References

  1. Ladyzhenskaya O.A. Boundary value problems of mathematical physics. Moscow: Nauka, 1973, 407 p. Available at: https://djvu.online/file/Rh97R3cVXNcZE?ysclid=lntxmubmb390280080. (In Russ.)
  2. Pul’kina L.S. Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind. Russian Mathematics, 2012, vol. 56, issue 4, pp. 62-–69. DOI: https://doi.org/10.3103/S1066369X12040081. (In
  3. English; original in Russian)
  4. Pul’kina L.S. Problems with non-classical conditions for hyperbolic equations: monograph. Samara: Izdatel’stvo "Samarskii universitet" , 2012, 194 p. (In Russ.)
  5. Dmitriev V.B. A non-local problem with integral conditions for a wave equation. Vestnik of Samara State University. Natural Science Series, 2006, no. 2 (42), pp. 15–27. Available at: http://vestniksamgu.ssau.ru/est/2006web2/math/200620002.pdf. (In Russ.)
  6. Cannon J.R. The solution of the heat equation subject to the specification of energy. Quarterly of Applied Mathematics, 1963, vol. 21, pp. 155–160. DOI: https://doi.org/10.1090/QAM/160437.
  7. Ionkin N.I. The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition. Differential Equations, 1977, vol. 13, no. 2, pp. 294–304. Available at: https://www.mathnet.ru/rus/de2993. (In Russ.)
  8. Kamynin L.I. A boundary value problem in the theory of heat conduction with a nonclassical boundary condition. USSR Computational Mathematics and Mathematical Physics, 1964, vol. 4, issue 6, pp. 33—59. DOI: https://doi.org/10.1016/0041-5553(64)90080-1. (In English; original in Russian)
  9. Pulkina L.S. The L2 solvability of a nonlocal problem with integral conditions for a hyperbolic equation. Differential Equations, 2000, vol. 36, issue 2, pp. 316-–318. DOI: https://doi.org/10.1007/BF02754219. (In English; original in Russian)
  10. Pulkina L.S. A non-local problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels. Russian Mathematics, 2012, vol. 56, issue 10, pp. 26–37. DOI: https://doi.org/10.3103/S1066369X12100039. (in English; original in Russian)
  11. Pulkina L.S., Savenkova A.E. A problem with second kind integral conditions for hyperbolic equation. Vestnik of Samara University. Natural Science Series, 2016, no. 1-2, pp. 33–45. Available at: https://www.mathnet.ru/rus/vsgu499; https://www.elibrary.ru/item.asp?id=29345215. EDN: https://www.elibrary.ru/wfyota. (In Russ.)
  12. Pulkina L.S. A Nonlocal Problem with Integral Conditions for a Hyperbolic Equation. Differential Equations, 2004, vol. 40, no. 7, pp. 887–892. DOI: https://doi.org/10.1023/B:DIEQ.0000047025.64101.16 (In English; original in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Buntova Y.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».