Use of a Fluorescent Antiscalant to Investigate Scaling of Reverse Osmosis Membranes
- Autores: Oshchepkov M.S.1,2, Pervov A.G.3, Golovesov V.A.1,3, Rudakova G.Y.1, Kamagurov S.D.1, Tkachenko S.V.1,2, Andrianov A.P.3, Popov K.I.1
-
Afiliações:
- PAO Fine Chemicals R&D Center
- Mendeleev University of Chemical Technology
- Moscow State University of Civil Engineering
- Edição: Volume 1, Nº 4 (2019)
- Páginas: 254-266
- Seção: Article
- URL: https://journals.rcsi.science/2517-7516/article/view/207183
- DOI: https://doi.org/10.1134/S2517751619040061
- ID: 207183
Citar
Resumo
Knowledge of the scaling mechanism makes it possible to develop effective means to control scaling and improve the membrane performance, increasing the recovery. This paper presents new approaches to the study of the mechanism of scaling in the presence of polymeric inhibitors (antiscalants); the adsorption of antiscalant molecules on the crystal and membrane surfaces has been investigated. The relations of the antiscalant adsorption rates to the antiscalant dose and the calcium carbonate scaling rate have been revealed. For the first time, the inhibition process was “visualized” by using a fluorescent antiscalant containing a fluorescent moiety—a copolymer of N-allyl-4-methoxy-1,8-naphthalamide and acrylic acid (PAA-F1). The examination of the surfaces of crystals and membranes by scanning electron and fluorescence microscopy showed new unexpected results: the antiscalant is adsorbed on the membrane surface and on the surface of calcite crystals formed. Fluorescence turned out to be more intense and noticeable on the surface of crystal faces than inside the crystal. During the nucleation phase, the “dark” part of the crystal lattice is formed and then begins to be covered with a “luminous” layer of the fluorescent antiscalant, which blocks further crystal growth. During experiments with antiscalant solutions in distilled water, the antiscalant was found to be adsorbed on the membrane surface in the absence of calcium ions. In experiments in which the antiscalant was added into the original tap water, it was adsorbed on the surface of the resulting crystals, not on the membrane. The visualization of the crystal growth inhibition process opens up new possibilities for studying the mechanism of scaling and developing of new technologies to control scaling.
Sobre autores
M. Oshchepkov
PAO Fine Chemicals R&D Center; Mendeleev University of Chemical Technology
Email: ale-pervov@yandex.ru
Rússia, Moscow; Moscow
A. Pervov
Moscow State University of Civil Engineering
Autor responsável pela correspondência
Email: ale-pervov@yandex.ru
Rússia, Moscow
V. Golovesov
PAO Fine Chemicals R&D Center; Moscow State University of Civil Engineering
Email: ale-pervov@yandex.ru
Rússia, Moscow; Moscow
G. Rudakova
PAO Fine Chemicals R&D Center
Email: ale-pervov@yandex.ru
Rússia, Moscow
S. Kamagurov
PAO Fine Chemicals R&D Center
Email: ale-pervov@yandex.ru
Rússia, Moscow
S. Tkachenko
PAO Fine Chemicals R&D Center; Mendeleev University of Chemical Technology
Email: ale-pervov@yandex.ru
Rússia, Moscow; Moscow
A. Andrianov
Moscow State University of Civil Engineering
Email: ale-pervov@yandex.ru
Rússia, Moscow
K. Popov
PAO Fine Chemicals R&D Center
Email: ale-pervov@yandex.ru
Rússia, Moscow
Arquivos suplementares
