Characteristics of microsporogenesis in the triploid apple tree and it’s parental form in connection with usage in breeding at the polyploid level

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An effective method of creating triploid apple cultivars, which are superior in their characteristics to diploid cultivars, is the crossing of heterochromosomal forms of the type: 2x × 4x, 4x × 2x. In order to provide a wide range of genetic diversity of riploid hybrids, it is necessary to have a large set of tetraploid donor forms of diploid gametes. A limited set of such forms is a limiting factor for this direction of breeding. And the effectiveness of work on obtaining new valuable apple varieties based on the use of the polyploidy method largely depends on their diversity Therefore, the identification of new apple tetraploids, as well as the study of cytoembryological features of their generative structures, the determination of the quality of the formed gametes necessary for successful breeding and for predicting the results of these works are relevant. Meiosis during microsporogenesis was studied in two tetraploid apple forms. To study meiosis during microsporogenesis, temporary pressed specimen were prepared by the acetohematoxylin method; the propionic-lacmoid method was used to determine the ploidy of hybrid offspring. Microscopic studies were carried out on a Nikon-50i microscope at a magnification of 10 x 105 x 40, 10 x 1.5 x 100. The analysis of the course of meiosis during microsporogenesis in apple tetraploid 34-21-39 [30-47-88(4x)×Krasa Sverdlovska(2x)] and its parent form 30-47-88 [Liberty×13-6-106 (Suvorovetz seedling)] showed that the hybrid 34-21-39 was characterized by the most correct course of meiosis. The largest percentage of deviations and the diversity of morphological types of disorders were detected in the form 30-47-88. Common types of violations were noted. Despite the presence of disorders during meiosis in tetraploid forms, microsporogenesis ended with the formation of visually normal one–dimensional pollen: 89% in the form 34-21-39 and 50% in the form 30-47-88. In combinations of crosses involving the studied forms, a high yield of triploid plants was noted. Consequently, the tetraploid apple forms 34-21-39 and 30-47-88 can be recommended for hybridization for the purpose of mass production of triploid seedlings. The results allow us to conclude that the tetraploid apple forms 34-21-39 and 30-47-88 can be used in breeding as pollinators in heteroploid crosses (2x × 4x) to obtain triploid genotypes.

全文:

受限制的访问

作者简介

N. Lavrusevich

Russian Research Institute of Fruit Crop Breeding

编辑信件的主要联系方式.
Email: lavrusevich@orel.vniispk.ru

PhD in Agricultural Sciences

俄罗斯联邦, Zhilin village, Oryol region

А. Borodkina

Russian Research Institute of Fruit Crop Breeding

Email: lavrusevich@orel.vniispk.ru

Junior Researcher

俄罗斯联邦, Zhilin village, Oryol region

M. Zubkova

Russian Research Institute of Fruit Crop Breeding

Email: lavrusevich@orel.vniispk.ru

Junior Researcher

俄罗斯联邦, Zhilin village, Oryol region

参考

  1. Zhuchenko A.A. Adaptivnaya sistema selekcii rastenij (ekologicheskie osnovy). M.: RUDN, 2001. T. I. 780 s.
  2. Zhuchenko A.A. Ekologicheskaya genetika kul’turnyh rastenij i problemy agrosfery (teoriya i praktika). M.: Agrorus, 2004. T. I. 690 s.
  3. Kaptar’ S.G. Uskorennyj propionovo-lakmoidnyj metod prigotovleniya i okrashivaniya vremennyh citologicheskih preparatov dlya podscheta hromosom u rastenij // Citologiya i genetika. 1967. T. 1. № 4. S. 87–90.
  4. Parfenov V.I., Dmitrieva S.A. Rol’ poliploidii v evolyucii rastenij v usloviyah umerennogo klimata i ravninnogo rel’efa (na primere flory Belorussii) // Izvestiya AN BSSR. ser. biol. nauk. 1991. № 3. S. 39.
  5. Pausheva Z.P. Praktikum po citologii rastenij. Moskva: Kolos, 1980. 304 s.
  6. Pershina L.A. O roli otdalennoj gibridizacii i poliploidii v volyucii rastenij // Informacionnyj vestnik VOGIS. 2009. T. 13. № 2. S. 336–344.
  7. Sedov E.N. Selekciya i novye sorta yabloni. Orel: VNIISPK, 2011. 624 s.
  8. Sedov E.N., Sedysheva G.A., Krasova N.G. i dr. Dostoinstva i perspektivy novyh triploidnyh sortov yabloni dlya proizvodstva// Sadovodstvo i vinogradarstvo. 2017. № 2. S. 24–30.
  9. Sedov E.N., Sedysheva G.A., Serova Z.M. Selekciya yabloni na poliploidnom urovne. Orel: VNIISPK, 2008. 368 s.
  10. Sedov E.N., Yanchuk T.V., Korneeva S.A. Novye diploidnye, triploidnye, immunnye k parshe i kolonnovidnye sorta yabloni v sovershenstvovanii sortimenta // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2022. № 1. S. 25–31. doi: 10.30850/vrsn/2022/1/25-31
  11. Sedov E.N., Yanchuk T.V., Korneeva S.A. Cennye donory diploidnyh gamet dlya sozdaniya triploidnyh sortov yabloni // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2020. № 3. S. 13-17. doi: 10.30850/vrsn/2020/3/13-17
  12. Programma i metodika sortoizucheniya plodovyh, yagodnyh i orekhoplodnyh kul’tur/ Pod red. E.N. Sedova i T.P. Ogol’covoj. Orel: VNIISPK, 1999. 608 s.
  13. Yanchuk T.V., Sedov E.N., Korneeva S.A., Veprinceva M.V. Turgenevskoe i trener Petrov – novye triploidnye sorta yabloni selekcii VNIISPK // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2022. № 6. S. 66–69. doi: 10.31857/2500-2082/2022/6/66-69
  14. Sattler M.C., Carvalho C.R., Clarindo W.R. The polyploidy and its key role in plant breeding // Planta. 2016. № 2432. P. 281–296. doi: 10.1007/s00425-015-2450-x
  15. Švara A., Ilnikar K., Carpentier S. et al. Polyploidy affects the development of Venturia inaequalis in scab-resistant and -susceptible apple cultivars // Scientia Horticulturae. 2021. 290 p. doi: 10.1016/j.scienta.2021.110436
  16. Wójcik D, Marat M, Marasek-Ciołakowska A et al. Apple Autotetraploids – Phenotypic Characterisation and Response to Drought Stress // Agronomy. 2022. Vol. 12. 161 p. doi: 10.3390/agronomy12010161

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Characterization of microsporogenesis in tetraploid forms of apple trees

下载 (226KB)
3. Fig. 2. Abnormal division during microsporogenesis: a - metaphase-I, chromosome run-in, 30-47-88; b - anaphase-I, chromosome lag, 30-47-88 (4x); c - metaphase-II, chromosome ejections, 30-47-88; d - telophase-II supernumerary nuclei 34-21-39; e - pentad, 34-21-39; f - hexad, 30-47-88

下载 (654KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##