ПОИСК ХИМИЧЕСКИХ ВЕЩЕСТВ, ОБЛАДАЮЩИХ АКАРИЦИДНОЙ АКТИВНОСТЬЮ ПРОТИВ КЛЕЩЕЙ VARROA DESTRUCTOR - ПАРАЗИТОВ МЕДОНОСНЫХ ПЧЕЛ APIS MELLIFERA L

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Цель исследования - провести обзор новых методов борьбы с клещом Varroa destructor, основанных на биологической природе медоносной пчелы и клеща. Проанализированы литературные источники на предмет сопоставления жизненных циклов этих объектов. Получены данные об изменении поведения клеща под влиянием выбранных скринингом соединений. Исследователи проверили 13 химических веществ, среди которых диалкоксибензолы, эфиры 5-(2'-гидроксиэтил) циклопент-2-ен-1-ола(ци-эфиры), а также N,N-диэтил-мета-толуамид (DEET) - известный репеллент насекомых. Диалкоксибензолы и ци-эфиры, воздействуя на клещей, сдвигают их предпочтение от пчел-кормилиц к пчелам-фуражирам. DEET не влияет на поведение медоносных пчел, но снижает способность клещей их достигать. Наибольшую активность проявил 5-(2'-метоксиэтил) циклопент-2-ен-1-бутоксидиэфир, оказывая зависимое от дозы (0,01 и 0,1 мкг) подавление реакции передних лапок клеща на летучие вещества медоносной пчелы. Долгосрочный эффект выполнен под влиянием низкой (0,01 мкг) дозы. Воздействие соединения вызывает инверсию предпочтения клещей с нарушением химического распознавания пчел. В экспериментах по изучению акарицидной активности в дозе 1 мкг 1-аллилокси-4-пропоксибензола происходила гибель 70% клещей через 4 ч воздействия, 90% - через 6 ч. Необходимо подтверждение результатов лабораторных опытов в условиях пасеки.

Об авторах

Т. Ю Дольникова

ВНИИ ветеринарной энтомологии и арахнологии - филиал ФИЦ Тюменского научного центра СО РАН

Email: dolnikova.tanya@yandex.ru
кандидат химических наук Тюмень, Россия

З. Я Зинатуллина

ВНИИ ветеринарной энтомологии и арахнологии - филиал ФИЦ Тюменского научного центра СО РАН

кандидат биологических наук Тюмень, Россия

Список литературы

  1. Akhtar Y., Yu Y., Isman M.B., Plettner E. Dialkoxybenzene and dialkoxyallylbenzene feeding and oviposition deterrents against the cabbage looper, Trichoplusia ni: potential insect behavior control agents //Journal of agricultural and food chemistry. 2010. V. 58. № 8. Р. 4983-4991. https://doi.org/10.1021/jf9045123
  2. Allan S.A. Chemical ecology of tick-host interactions //Olfaction in vector-host interactions. Wageningen Academic. 2010. Р. 327-348. https://doi.org/10.3920/9789086866984_017
  3. Bąk B., Wilde J., Siuda M. Characteristics of north-eastern population of Varroa destructor resistant to synthetic pyrethroids. // Medycyna Weterynaryjna. 2012. V. 68. № 10. Р. 603-606.
  4. Bernardi S., Venturino E. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite // Heliyon. 2016. V. 2. № 5. https://doi.org/10.1016/j.heliyon.2016.e00101
  5. Corbel V., Stankiewicz M., Pennetier C. et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet // BMC biology. 2009. V. 7. № 1. P. 1-11. https://doi.org/10.1186/1741-7007-7-47
  6. Dawdani S., O’Neill M., Castillo C. et al. Effects of dialkoxybenzenes against Varroa destructor and identification of 1-allyloxy-4-propoxybenzene as a promising acaricide candidate //Scientific Reports. 2023. V. 13. № 1. P. 11195. https://doi.org/10.1038/s41598-023-38187-6
  7. Del Piccolo F., Nazzi F., Della Vedova G., Milani N. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons //Parasitology. 2010. V. 137. № 6. P. 967-973. https://doi.org/10.1017/S0031182009991867
  8. Dillier F.X., Fluri P., Imdorf A. Review of the orientation behaviour in the bee parasitic mite Varroa destructor: sensory equipment and cell invasion behaviour //Revue suisse de zoologie. 2006. V. 113. № 4. P. 857-878. https://doi.org/10.5963/bhl.part.80381
  9. Ebrahimi P., Spooner J., Weinberg N., Plettner E. Partition, sorption and structure activity relation study of dialkoxybenzenes that modulate insect behavior //Chemosphere. 2013. V. 93. № 1. P. 54-60. https://doi.org/10.1016/j.chemosphere.2013.04.065
  10. Eliash N., Singh N.K., Kamer Y. et al. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor? // PLoS One. 2014. V. 9. №. 9. P. e106889. https://doi.org/10.1371/journal.pone.0106889
  11. Eliash N. Learning and disrupting the chemical communication of Varroa destructor Anderson and Trueman // Food and Environment of the Hebrew University, Jerusalem. 2012.
  12. Francis R.M., Nielsen S.L., Kryger P. Varroa-virus interaction in collapsing honey bee colonies //PloS One. 2013. V. 8. № 3. P. e57540. https://doi.org/10.1371/journal.pone.0057540
  13. Guzmán-Novoa E., Eccles L., Mcgowan J. et al. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada //Apidologie. 2010. V. 41. № 4. P. 443-450. https://doi.org/10.1051/apido/2009076
  14. Kather R., Drijfhout F.P., Martin S.J. Task group differences in cuticular lipids in the honey bee Apis mellifera // Journal of chemical ecology. 2011. V. 37(2). P. 205-212. https://doi.org/10.1007/s10886-011-9909-4
  15. Kuster R.D., Boncristiani H.F., Rueppell O. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae //Journal of Experimental Biology. 2014. V. 217. № 10. P. 1710-1718. https://doi.org/10.1242/jeb.097766
  16. Le Conte Y., Meixner M.D., Brandt A. et al. Geographical distribution and selection of European honey bees resistant to Varroa destructor //Insects. 2020. V. 11. № 12. P. 873. https://doi.org/10.3390/insects11120873
  17. Mondet F., de Miranda J.R., Kretzschmar A et al. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor //PLoS pathogens. 2014. V. 10. № 8. P. e1004323. https://doi.org/10.1371/journal.ppat.1004323
  18. Plettner E., Eliash N., Singh N.K. et al. The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents // Apidologie. 2017. V. 48. P. 78-92. https://doi.org/10.1007/s13592-016-1452-8
  19. Repellent D. Insect Odorant Receptors Are Molecular Targets of the Insect // Science. 2008. V. 1153121. № 1838. P. 319. https://doi.org/10.1126/science.1153121
  20. Singh N.K., Eliash N., Raj S. et al. Effect of the insect feeding deterrent 1-allyloxy-4-propoxybenzene on olfactory responses and host choice of Varroa destructor // Apidologie. 2020. V. 51. P. 1133-1142. https://doi.org/10.1007/s13592-020-00791-0
  21. Worek F., Eyer P., Thiermann H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning // Drug testing and analysis. 2012. V. 4. № 3-4. P. 282-291. https://doi.org/10.1002/dta.337
  22. Ziegelmann B., Rosenkranz P. Mating disruption of the honeybee mite Varroa destructor under laboratory and field conditions //Chemoecology. 2014. V. 24. № 4. P. 137-144. https://doi.org/10.1007/s00049-014-0155-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).