Possibilities of Python Application for Modelling Probabilistic Problems

Cover Page

Cite item

Full Text

Abstract

The digital transformation of higher education is an important process that affects all aspects of the educational environment. The introduction of digital technologies, including Python programming, is becoming a key factor in the teaching of mathematical disciplines. Today, there is a need to find new teaching practices in integration with digital technologies in order to develop the necessary competences in students, especially in the field of mathematical disciplines. In this regard, the use of Python as a tool for modelling and data analysis opens new horizons for the development of new training courses, deepening subject knowledge in practice, improving research activities, innovativeness of the educational process in general. The application of Python for modelling probabilistic problems contributes to the development of new approaches to solving complex problems in various fields of science and technology. Research Methods. The basis for solving probabilistic problems on the example of studying random variables is the use of Python programming language libraries: NumPy and SciPy. Results. The program of the course within the framework of an optional discipline for students of training direction 44.03.05 Pedagogical Education (with two profiles of training), orientation (profile) Mathematics and Computer Science, Physics, demonstrating ways of modelling probabilistic problems in the study of random variables using Python is proposed. The relevance of integrating programming into the curriculum of mathematical disciplines is determined by the need of modern information society. The digital transformation of higher education, leading to the application of Python in mathematical disciplines, is a significant direction for both science and practice. This approach improves the quality of education, prepares students for the challenges of the modern world, providing them with useful skills for successful professional activity.

About the authors

K. G. Lykova

Yelets State University named after I.A. Bunin

Author for correspondence.
Email: ksli1024@mail.ru
Candidate Sci. (Pedagogy), senior lecturer Yelets

References

  1. Adiwijaya, A. P. (2022). Analisa Cara kerja microservice berbasis Phyton untuk perancangan credit score PADA di fintech. Jurnal Ilmiah Multidisiplin, 3(1), 74-82. doi: 10.56127/jukim.v1i03.186
  2. Atrokhov, K. G., Kushnerov, A. V., Lavrova, O. A., Cherginets, D. N., Shcheglova, N. L. (2023). Python v disciplinakh spetsial'nosti «Kompyuternaya matematika i sistemnyy analiz» [Python in the disciplines of speciality ‘Computer Mathematics and System Analysis’]. Transformatsiya mekhaniko-matematicheskogo i IT-obrazovaniya v usloviyakh tsifrovizatsii: materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 65-letiyu MMF, (pp. 162-166). Minsk. (In Russ.).
  3. Borkovskaya, I. M., Pyzhkova, O. N. (2022). О probleme obespecheniya kachestva znaniy po vysshey matematike v sovremennykh usloviyakh [About the problem of ensuring the quality of knowledge in higher mathematics in modern conditions]. Innovatsionnye tekhnologii obucheniya fiziko-matematicheskim i professional'no-tekhnicheskim distsiplinam Innovative teaching techniques in physics, mathematics, vocational and mechanical training: materialy XІV Mezhdunar.nauch.-prakt.internet-konf. (pp. 6–9). Mozyr, Moscow State Pedagogical University imeni I.P. Shamyakin. (In Russ.).
  4. Brovka, N. V. (2020). Didactic features of the organisation of computer-based learning tools for students of mathematical specialties. Informatics and Education, 1(310), 34-41. doi: 10.32517/0234-0453-2020-35-1-34-41 (In Russ., abstract in Eng.)
  5. Burovsky, E. A., Grishunina, Y. B. (2022). Zadachi matematicheskoy statistiki i ikh reshenie s ispol'zovaniem yazyka programmirovaniya Python. Moscow: Izd. house of the Higher School of Economics, 2022.
  6. Butsyk, S. V. (2019). ‘Digital’ generation in the educational system of the Russian region: problems and solutions. Open Education, 1, 27-33. doi: 10.21686/1818-4243-2019-1-27-33 (In Russ., abstract in Eng.)
  7. Ceng Giap, Yo. (2023). Implementation of Face Mask Detection Using Phyton Programming Language. bit-Tech, 1 (6), 51-58. doi: 10.32877/bt.v6i1.893
  8. Davidson-Pylon Cameron. (2019). Bayesian Methods for Hackers. SPb: Peter.
  9. Dvoryatkina, S. N., Shcherbatykh, S. V. (2020). Teoretiko-metodicheskoe obespechenie fraktal'nogo formirovaniya i razvitiya veroyatnostnogo stilya myshleniya v processe obucheniya matematike. Moscow: Flinta. (In Russ).
  10. Elipkhanov, A. V. I. (2017). Mathematics and mathematics education in the format of the problem of formation of critical thinking procedures in the subjects of cognition. Baltic Humanities Journal, 6, 4 (21), 439-442. (In Russ., abstract in Eng.)
  11. Elsa Nandita. (2023). Komparasi Stabilitas dan Efektifitas Phyton dengan C++ Sebagai Algoritma Pemrograman Pemecahan Masalah pada Programmer Pemula. Jurnal Arjuna: Publikasi Ilmu Pendidikan, Bahasa dan Matematika. 6(1), 104-115. doi: 10.61132/arjuna.v1i6.298
  12. Esin, V. A., Zinchenko, N. A. (2019). On the technology of teaching mathematics through problem solving. Bulletin of Belgorod Institute of Education Development, 6, 4 (14), 31-38. (In Russ., abstract in Eng.)
  13. Fauziah, A. (2023). Sistem identifikasi pengukuran baju menggunakan Human Body Estimation dataset Mediapipe dengan metode Euclidean distance. Aisyah Journal of Informatics and Electrical Engineering (A.J.I.E.E), 2(5), 127-134. doi: 10.30604/jti.v5i2.151
  14. Gusakova, E. M., Gusakova, T. A. (2019). Implementation of active methods of teaching mathematics in the conditions of digitalisation of education. Pedagogical Journal, 9(1), 610-619. doi: 10.34670/AR.2019.44.1.093 (In Russ., abstract in Eng.)
  15. Harahap, H. S. (2024). Implementasi phyton dalam matematika. Mathematical and Data Analytics, 1(1), 1-8. doi: 10.47709/mda.v1i1.3631
  16. Irsan, M. (2024). Implementasi Aplikasi Pandas (Phyton) Dalam Mengelola Data Excel Sebagai Media Persiapan Pelaporan Nilai Raport Siswa. Jurnal Pengabdian Masyarakat Bangsa, 4 (2), 1243-1249. doi: 10.59837/jpmba.v2i4.977
  17. Karakaya V. (2021). Matematik Felsefesi Bakımından Matematik Nesnelerin Modellenmesi Üzerine Karakaya Beytulhikme, 3 (11), 1143-1155. doi: 10.18491/beytulhikme.1799
  18. Krivolapov, S. Ya. (2021). Ispol'zovanie yazyka Python v teorii veroyatnostey. Moscow: Prometheus. (In Russ).
  19. Li J. H. Ju. (2022). Kemahiran Menjana Masalah Matematik Berayat Berdasarkan Taksonomi Bloom Semakan dalam kalangan Guru Matematik. Malaysian Journal of Social Sciences and Humanities (MJSSH), 3(7). e001380. doi: 10.47405/mjssh.v7i3.1380
  20. Lykova, K. G. Teoriya veroyatnostey kak instrument razvitiya komponentov intellektual'noy mobil'nosti uchashchikhsya [Probability theory as a tool for developing components of intellectual mobility of students]. Matematika v sovremennom mire: materialy Vserossiyskoy nauchno-prakticheskoy konferentsii, posvyashchennoy 110-letiyu so dnya rozhdeniya sovetskogo matematika, doktora fiziko-matematicheskikh nauk, professora P.P. Korovkina (pp. 121-126). Kaluga. (In Russ.).
  21. Popov, N. I., Bolotin, E. S. (2023). Use of integrated environment for development and training Python IDLE in the study of probability theory by students. Vestnik of Moscow State Pedagogical University. Series ‘Informatics and Informatisation of Education’, 1(63), 79-85. doi: 10.25688/2072-9014.2023.63.1.07 (In Russ., abstract in Eng.)
  22. Raducan, E. (2023). Quality Issue Classification by Using Dedicated Data Analysis Software Created in Phyton Language. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 24, 10-20. doi: 10.55549/epstem.1406198.
  23. Raji-Lawal Hanat Yetunde, Abayomi-Alli Adebayo, Oloyede Ayodele, Orioke Omoyemi, Shanu Riliwan, Opoola Yusuf. (2023). Development of a learning management system for Phyton programming language. Caleb International Journal of Development Studies, 2 (6), 164-179. doi: 10.26772/cijds-2023-06-02-10
  24. Sapozhkova, N. A. (2019). Model of formation of readiness of future teachers of mathematics to develop systems thinking in the conditions of digitalisation of education. Perspectives of Science, 7 (118), 194-196. (In Russ., abstract in Eng.)
  25. Scherbatykh, S. V. (2011). V mire stokhastiki (elektivnyy kurs). Yelets: Bunin Yelets State University. (In Russ).
  26. Shcherbatykh, S. V. [et al]. (2019). Interaktivnaya stokhastika. Moscow: Flinta. (In Russ).
  27. Sudiyono, W. (2022). The application of Artificial intelingence in DJIA stocks to improve the investment profitability using phyton. International Journal of Economics, Business and Accounting Research, 2(6), 793. doi: 10.29040/ijebar.v6i2.4790
  28. Surachman, S. (2022). The analysis of control raw material Injection Phyton in the implementation of Economic Order Quantity (EOQ) in PT. Victory Chyngluh Indonesia. International Journal of Multidisciplinary Research and Literature, 1(1), 44-53. doi: 10.53067/ijomral.v1i1.5
  29. Uvarov, A. Y., Gable, E., Dvoretskaya, I. В. [et al]. (2019). Trudnosti i perspektivy tsifrovoy transformatsii obrazovaniya. Moscow: Izd. house of the Higher School of Economics. (In Russ).
  30. Varshavskaya, E. Y., Kotyrlo, E. S. (2019). Graduates of engineering and economic specialities: between demand and supply. Education Issues, 2, 98-128. doi: 10.17323/1814-9545- 2019-2-98-128 (In Russ., abstract in Eng.)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».