A new method of distal blocking of intramedullary implants

Cover Page

Cite item

Full Text

Abstract

Aim – to assess the capabilities of the developed method and device for distal blocking of intramedullary implants.

Material and methods. An experimental study on the tibia models was performed in the settings of the Department of Traumatology and orthopedics of the Voronezh State Medical University. The main group included 10 models on which the blocking was done using the developed method. In the control group (10 models) the "free hand" method was used. The study evaluated the following parameters: the duration of blocking, the time of X-ray exposure, the number of blocking attempts.

Results. In the main group, the duration of distal blocking procedure was significantly shorter than in the control group (T-criterion = -36.0; p < 0.05). The time of X-ray exposure in the main group was also less than in the control group (T-test = -30.2, p < 0.05). The number of blocking attempts in the control group was higher than in the main group (U-criterion = 20, p = 0.02). In the main group, all screws were inserted at the first attempt. In the control group, drilling holes past the pin holes was noted.

Conclusion. The developed method and the device for its implementation are universal. They can be used with most intramedullary pins and revision femoral components of a hip endoprosthesis, both cannulated and non-cannulated.

About the authors

Denis I. Varfolomeev

Voronezh State Medical University named after N.N. Burdenko

Author for correspondence.
Email: d.i.burdenko@yandex.ru
ORCID iD: 0000-0002-2133-6510

PhD, orthopedic traumatologist, postgraduate student of the Department of Traumatology and orthopedics

Russian Federation, Voronezh

References

  1. Yinsheng W, Bing H, Zhigang S, et. al. Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of tibia intramedullary nails. Medicine. 2018;97:27 e11305. doi: 10.1097/MD.0000000000011305
  2. Dyatel SV, Dyatel VV. Distal blocking in closed intramedullary osteosynthesis of tibial fractures. Difficulties and solutions. ARS Medica. 2011;17(53):138-142. (In Russ.). [Дятел С.В., Дятел В.В. Дистальное блокирование при закрытом интрамедуллярном остеосинтезе переломов большеберцовой кости. Трудности и решения. ARS Medica. 2011;17(53):138-142. Available at: https://rep.polessu.by/handle/123456789/25888
  3. Seyhan M, Ulku TK, Yuksel HY, et al. A new distal locking technique in intramedullary nailing. Cerrahpasa Med J. 2020;44(3):137-144. doi: 10.5152/cjm.2020.20012
  4. Belen'kij IG, Hominec VV. Historical parallels in the development of intramedullary osteosynthesis. Status and prospects. Modern Problems of Science and Education. 2020;5:138. (In Russ.). [Беленький И.Г., Хоминец В.В. Исторические параллели развития интрамедуллярного остеосинтеза. Состояние и перспективы. Современные проблемы науки и образования. 2020;5:138]. doi: 10.17513/spno.30055
  5. Patra SK, Shetty AP, Jayaramaraju D, et al. Radiation exposure to the surgeon, surgical assistant, and scrub nurse during closed intramedullary nailing of long bones - Does it vary depending on the experience of the surgeon? J Orthop Trauma. 2019;33(2):52-57. doi: 10.1097/BOT.0000000000001345
  6. Strom P, Hailer P, Wolf O. Time to entry point and distal locking of intramedullary nails: a methodological phantom study comparing biplanar and uniplanar surgical imaging. BMC Musculoskeletal Disorders. 2022;23:178. doi: 10.1186/s12891-022-05130-1
  7. Hsu W-E, Yu C-H, Chang C-J, et al. Implementation and performance evaluation of a drilling assistive device for distal locking of intramedullary nails. Int J Med Robot. 2020;16:e2110. doi: 10.1002/rcs.2110
  8. Xiaoxu Z, Yonggang F, Juwu C. A comparison of free-hand method and electromagnetic navigation technique for the distal locking during intramedullary nailing procedures: a meta-analysis. Archives of orthopaedic and trauma surgery. 2021;141:45-53. doi: 10.1007/s00402-020-03456-w
  9. Varfolomeev DI. Method for distal blocking of intramedullary implants. Application for invention № 2022122487 from 19.08.2022. (In Russ.). [Варфоломеев Д.И. Способ дистального блокирования интрамедуллярных имплантатов. Заявка на изобретение № 2022122487 от 19.08.2022]. Available at: https://www1.fips.ru/registers-doc-view/fips_servlet
  10. Voronin VM, Voronin MV, Nikitin VM, et al. Method for distal blocking of intramedullary nails during osteosynthesis of long tubular bones and device for its implementation. RF patent for an invention № 2387401 from 27.04.2010. (In Russ.). [Воронин В.М., Воронин М.В., Никитин В.М., и др. Способ дистального блокирования интрамедуллярных стержней при остеосинтезе длинных трубчатых костей и устройство для его осуществления. Патент РФ на изобретение № 2387401 от 27.04.2010]. Available at: https://www1.fips.ru/registers-doc-view/fips_servlet
  11. Davut S, Dogramacı Y. Endoscopy-assisted distal locking of an intramedullary nail: A new experimental technique to reduce radiation exposure during distal locking of the intramedullary nails. Jt Dis Relat Surg. 2021;32(3):642-648. doi: 10.52312/jdrs.2021.297
  12. Gao H, Liu Z, Wang G. A New accurate, simple and less radiation exposure device for distal locking of femoral intramedullary nails. International Journal of General Medicine. 2021;14:4145-4153. doi: 10.2147/IJGM.S321005
  13. Ma L, Zhao Z, Zhang B, et al. Three dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robotics Comput Assist Surg. 2018;e1909. doi: 10.1002/rcs.1909
  14. Aslan A, Konya M N, Gulcu A, et al. Is electromagnetic guidance system superior to a free-hand technique for distal locking in intramedullary nailing of tibial fractures? A prospective comparative study. Ulus travma acil cerrahi derg. 2020;26:280-286. doi: 10.14744/tjtes.2020.94490
  15. Camarda L, Zini S, Butera M, et al. Electromagnetic distal targeting system does not reduce the overall operative time of the intramedullary nailing for humeral shaft fractures. Journal of Orthopaedics. 2018;15:899-902. doi: 10.1016/j.jor.2018.08.028
  16. Allard A, Letissier H, Le Nen D, et al. Evaluation of the accuracy of the Sureshot electromagnetic targeting system in distal locking of long-nailed humeral diaphyseal fractures. Orthopaedics & Traumatology: Surgery & Research. 2021;107:1-5. doi: 10.1016/j.otsr.2020.102785
  17. Wei-En H, Ching-Hsiao Y, Chih-Ju C, et al. C-Arm image-based surgical path planning method for distal locking of intramedullary nails. Applied Bionics and Biomechanics. 2018;1-10. doi: 10.1155/2018/4530386
  18. Tu P, Gao Y, Lungu A, et al. Augmented reality based navigation for distal interlocking of intramedullary nails utilizing Microsoft HoloLens 2. Computers in Biology and Medicine. 2021;133:1-11. doi: 10.1016/j.compbiomed.2021.104402

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. A view of the device: 1 – block for positioning drills, 2 – clamps, 3 – locking screw, 4 – side block, 5 – guides, 6 – drills, 7 – case.

Download (1MB)
3. Figure 2. Device fixed on the guide installed in the pin in the model of the tibia (in section): 1 – device, 2 – movable blocks, 3 – guide, 4 – locking screws, 5 – side block, 6 – model of the tibia, 7 – pin.

Download (1MB)
4. Figure 3. Device fixed in a pin installed in the model of the tibia (in section): 1 – device, 2 – movable blocks, 3 – spoke for blocking movable blocks, 4 – locking screws, 5 – guide, 6 – drills, 7 – lateral block, 8 – pin, 9 – tibia model.

Download (1MB)

Copyright (c) 2022 Varfolomeev D.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».