RECOGNITION OF COGNITIVE POTENTIALS TO THE TARGET STIMULI IN THE BRAIN-COMPUTER INTERFACE ON THE BASIS OF THE ENSEMBLE OF CLASSIFIERS


Cite item

Full Text

Abstract

Background. A number of studies have been done on detection of human visual attention focus by means of P300 brain-computer interfaces (BCI). However, the performance of interfaces on P300 is still low, since this technique requires the repeated presentation of target and non-target stimuli. There are some indications that it is appropriate to use ensembles of classifiers to improve the accuracy of recognition of multidimensional objects. The goal of the present study was to verify the feasibility of application of ensembles of classifiers to speed up the work of the BCI P300. Methods. The study involved 22 subjects, whose task was to closely monitor the highlights of target objects on the computer screen, presented as 8 triangles located in a circle (angle of 7.7 degrees). Single classifiers and ensembles of classifiers based on linear discriminant of Fisher were used to detect the target responses in the EEG. Results. The use of the ensemble of classifiers provided almost the same accuracy of algorithmic choice of target reactions, EEG in 78-80%, as compared with the use of single classifiers, but with two times smaller number of repetitions of the test stimuli and, therefore, faster detection of the target reactions of the EEG. Conclusions. This work implies that the P300 BCI with the participation of the ensemble of classifiers can be used to build high-speed communication systems for both the stroke patients and healthy people in special circumstances for additional alarm at the inability to use speech.

About the authors

D A Kirjanov

Lomonosov Moscow State University; Lobachevsky State University of Nizhnij Novgorod

Email: daniel.kirjanov@gmail.com
postgraduate student at the Department of Biology, Lomonosov Moscow State University.

A Y Kaplan

Lomonosov Moscow State University; Lobachevsky State University of Nizhnij Novgorod

Email: akaplan@mail.ru
PhD, professor, Head of the Laboratory for Neurophysiology and Neuro-Computer Interfaces, Lomonosov Moscow State University.

References

  1. Basyul I.A., Kaplan A.Y. Changes in the N200 and P300 Components of Event-Related Potentials on Variations in the Conditions of Attention in a Brain-Computer Interface System. Neuroscience and Behavioral Physiology. 2015. 45(9): 10381042
  2. Fazel-Rezai R., Allison B.Z., Guger Ch., et al. P300 brain computer interface: current challenges and emerging trends Front Neuroeng. 2012; V.5: P.1-14
  3. Kaplan AY, Shishkin SL, Ganin IP et al. Adapting the P300-based brain-computer interface for gaming: a review. IEEE Transactions on Computational Intelligence and AI in Games (Special Issue on Brain/Neuronal-Computer Games Interfaces and Interaction). 2013. 5(2): 141-149
  4. Ганин И.П., Каплан А.Я. Интерфейс «мозг-компьютер» на основе волны P300: предъявление комплексных стимулов "подсветка + движение". Журнал высшей нервной деятельности им. И. П. Павлова. 2014. 64(1): 32-40
  5. Каплан А.Я. Нейрофизиологические основания и практические реализации технологии мозг-машинных интерфейсов в нейрологической реабилитации. Физиология человека. 2016. 42 (1): 118-127
  6. Мокиенко О.А., Черникова Л.А., Фролов А.А., Бобров П.Д. Воображение движения и его практическое применение. Журнал высшей нервной деятельности им. И.П. Павлова. 2013. 63(2): 195
  7. Ganin IP, Shishkin SL, Kaplan AY. A P300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design. PLOS ONE. 2013. 8(10): e77755
  8. Rahman A, Tasnim S. Ensemble Classifiers and Their Applications: A Review International Journal of Computer Trends and Technology (IJCTT). 2014. 10(1), P.31-35
  9. Rokach L. Ensemble Methods in Supervised Learning Data Chapter 50 in: Mining and Knowledge Discovery Handbook Oded Maimon • Lior Rokach Editors Second Edition Springer New York Dordrecht Heidelberg London. 2010.P.959-980

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Kirjanov D.A., Kaplan A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».