Dynamics of particulate load and chemical composition of snow cover in the area of thermal power and coke chemistry enterprises (case for the city of Kemerovo)

封面

如何引用文章

全文:

详细

Relevance. The necessity to investigate aerotechnogenic pollution around coal-fired thermal power and coke-chemical processing plant, which are one of the main sources of particulate matter emissions into the environment.

Aim. To assess the eco-geochemical conditions of the area around the thermal power station and coke-chemical processing plant based on long-term observations (2016–2023) of particulate load levels and the chemical composition of the particulate phase of snow cover (the case of Kemerovo).

Objects. The particulate phase of the snow cover formed by atmospheric precipitation in the area of pollutant transfer at a distance of up to 4.5 km from the studied plants.

Methods. Snow geochemical survey; instrumental neutron activation analysis; atomic absorption spectrometry; statistical analysis.

Results. The particulate load level ranges from allowable (≤250 mg/(m2*day)) to moderately hazardous (250–450 mg/(m2*day)) during the study period. A correlation exists between particulate load and meteorological factors, with increased loads linked to higher humidity, precipitation, and lower wind speeds in winter. The particulate load is statistically lower within 1 km (≈245 mg/(m2*day)), while levels rise to 381 mg/(m2*day) between 1.5 and 4.5 km, effected by natural and anthropogenic factors. The snow cover particulate phase shows high Ba, La, Sm, Tb, Yb, U concentration (over 10 times background levels), while Ca, Sc, Sr, Cs, Ce, Nd, Hf, Ta, Hg concentration are 2–10 times above background. This indicates hazardous pollution levels in 2016 and 2022 and moderately hazardous level in 2023. The concentrations of these elements remained unchanged throughout the study period, which allows them to be used as markers for the particulate phases of the snow cover in this area. Interestingly, it was found that the formation of geochemical specifics in particulate snow cover is related to coal composition, fly ash composition, fuel consumption volume, and meteorological factors.

作者简介

Valeriia Novikova

National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: vdk10@tpu.ru

Postgraduate Student

俄罗斯联邦, 30, Lenin avenue, Tomsk, 634050

Anna Talovskaya

National Research Tomsk Polytechnic University

Email: talovskaya@tpu.ru
ORCID iD: 0000-0002-2227-2221

Dr. Sc., Professor

俄罗斯联邦, 30, Lenin avenue, Tomsk, 634050

Egor Yazikov

National Research Tomsk Polytechnic University

Email: yazikoveg@tpu.ru
ORCID iD: 0000-0002-7925-6249

Dr. Sc., Professor

俄罗斯联邦, 30, Lenin avenue, Tomsk, 634050

参考

  1. Safonov S.A. The coal industry. Environmental pollution while improving the quality characteristics of coal. Bulletin of Science and Education, 2024, no. 3, pp. 16–19. (In Russ.)
  2. Garcia E., Liu P., Bone S.E., Wen Y., Tang Y. Systematic characterization of selenium speciation in coal fly ash. Environmental Science: Processes & Impacts, 2024, vol. 26 (12), pp. 2240–2249. doi: 10.1039/d4em00398e.
  3. Ige O., Ratnayake I., Martinez J., Pepper S., Alsup A., McGuirk M., Gajewski B., Mudaranthakam D.P. A regional study to evaluate the impact of coal-fired power plants on lung cancer incident rates. Journal of Cancer Epidemiology and Prevention, 2024, vol. 2 (1), pp. 2240–2249. doi: 10.1080/28322134.2024.2348469.
  4. Vig N., Khaiwal R., Mor S. Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: a potential review. Chemosphere, vol. 341, 140103. doi: 10.1016/j.chemosphere.2023.140103.
  5. Revich B.A. To assess the impact of fuel and energy complex activities on the quality of the environment and public health. Forecasting problems, 2010, no. 4, pp. 87–99. (In Russ.)
  6. Yanin E.P. Mercury in dust emissions from industrial enterprises. Moscow, IMGRE Publ., 2004. 24 p. (In Russ.)
  7. Voloh A.A. Experience in controlling atmospheric air pollution by metals and volatile organic compounds in urban and background areas. Geochemical studies of urban agglomerations. Moscow, IMGRE Publ., 1998. pp. 40–58. (In Russ.)
  8. Liu Q., Gao J., Li G., Zheng Y., Li R., Yue T. Bibliometric analysis on mercury emissions from coal-fired power plants: a systematic review and future prospect. Environmental Science and Pollution Research, 2024, vol. 31 (13), pp. 19148–19165. doi: 10.1007/s11356-024-32369-z.
  9. Huang Y., Hu H., Fu B., Zou C., Liu H., Liu X., Wang L., Luo G., Yao H. Fine particulate-bound arsenic and selenium from coal-fired power plants: formation, removal and bioaccessibility. Science of the Total Environment, 2022, 823:153723. doi: 10.1016/j.scitotenv.2022.153723.
  10. Liu X., Tan X., Li X., Cheng Y., Wang K. Spatial distribution, environmental behavior, and health risk assessment of PAHs in soils at prototype coking plants in Shanxi, China: stable carbon isotope and molecular composition analyses. Journal of Hazardous Materials, 2024, 468:133802. doi: 10.1016/j.jhazmat.2024.133802.
  11. Wu Y., Xu Z., Liu S., Tang M., Lu S. Emission characteristics of PM2.5 and components of condensable particulate matter from coal-fired industrial plants. Science of the Total Environment, 2021, 796:148782. doi: 10.1016/j.scitotenv.2021.148782
  12. Boyarkina A.P., Baykovskiy V.V., Vasilev N.V. Aerosols in natural plates of Siberia. Tomsk, TSU Publ., 1993. 157 p. (In Russ.)
  13. Yazikov E.G. Ecogeochemistry of urbanized territories in the South of Western Siberia. Dr. Diss. Tomsk, 2006. 423 p. (In Russ.)
  14. Astray B., Šípková A., Baragaño D., Pechar J., Krejci R., Komárek M., Chrastný V. Measuring Pb isotope ratios in fresh snow filtrate refines the apportioning of contaminant sources in the Arctic. Environmental Pollution, 2024, vol. 345, 123457. doi: 10.1016/j.envpol.2024.123457.
  15. Moskovchenko D., Pozhitkov R., Soromotin A., Tyurin V. The content and sources of potentially toxic elements in the road dust of Surgut (Russia). Atmosphere, 2022, vol. 13 (30), pp. 1–19. doi: 10.3390/atmos13010030.
  16. Moskovchenko D.V., Pozhitkov R.Y., Soromotin A.V. Snow Contamination by Metals and Metalloids in a Polar Town: A Case Study of Nadym, Russia. Archives of Environmental Contamination and Toxicology, 2024, vol. 86, pp. 304–324. doi: 10.1007/s00244-024-01057-x.
  17. Vlasov D., Vasil'chuk J., Kosheleva N., Kasimov N. Dissolved and suspended forms of metals and metalloids in snow cover of megacity: partitioning and deposition rates in western Moscow. Atmosphere, 2020, vol. 11 (9), 907. doi: 10.3390/atmos11090907.
  18. Starodymova D.P., Kotova E.I., Shevchenko V.P., Titova K.V., Lukyanova O.N. Winter atmospheric deposition of trace elements in the Arkhangelsk region (NW Russia): insights into environmental effects. Atmospheric Pollution Research, 2024, vol. 15 (12), 102310. doi: 10.1016/j.apr.2024.102310.
  19. Opekunov A.Yu., Opekunova M.G., Kukushkin S.Yu., Janson S.Yu. Mineralogical and geochemical parameters of snow cover within the anthropogenically disturbed sites of the Nadym-pur interfluve (Northern part of Western Siberia). Bulletin of the Moscow University, 2024, vol. 79, pp. 17–31. (In Russ.) doi: 10.55959/MSU0579-9414.5.79.3.2.
  20. Raputa V.F., Talovskaya A.V., Kokovkin V.V., Yazikov E.G. Analysis of observational data on aerosol pollution of snow cover in the vicinity of Tomsk and Seversk. Optics of the Atmosphere and Ocean, 2011, vol. 24, no. 1, pp. 74–78. (In Russ.)
  21. Kasimov N.S. Ecogeochemistry of urban landscapes. Moscow, MSU Publ., 1995. 336 p. (In Russ.)
  22. Talovskaya A.V., Filimonenko E.A., Yazikov E.G. Dynamics of the elemental composition of snow cover in the northeastern zone of influence of the Tomsk-Seversk industrial agglomeration. Optics of the atmosphere and ocean, 2014, vol. 27, no. 6, pp. 491–495. (In Russ.)
  23. Yazikov E.G., Talovskaya A.V., Zhornyak L.V. Mineralogy of technogenic formations: a textbook for academic bachelor's degree. Moscow, Yurajt Publ., 2016. 160 p. (In Russ.)
  24. Bortnikova S.B., Raputa V.F., Devyatova A.Yu., Yudahin F.N. Methods of analyzing snow cover pollution data in the zones of influence of industrial enterprises (on the example of Novosibirsk. Geoecology, engineering geology, hydrogeology, Geocryology, 2009, no. 6, pp. 515–525. (In Russ.)
  25. Artamonova S.Yu. Uranium and thorium in aerosol precipitation of Novosibirsk and its surroundings (Western Siberia). Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2020, vol. 331, no. 7, pp. 212–223. (In Russ.)
  26. Lezhenin A.A., Yaroslavceva T.V., Raputa V.F. Monitoring of aerosol pollution of snow cover based on ground and satellite information. Journal of the Siberian Federal University. Machinery and technology, 2016, no. 9 (7), pp. 950–959. (In Russ.)
  27. Decree of the Government of the Russian Federation dated 06.10.2021, no. 2816-R. Moscow, Collection of legislation of the Russian Federation Publ., 2021. 6 p. (In Russ.)
  28. Dudkina O.A., Minina V.I. Anthropogenic urban pollution and its impact on the population of the Kemerovo region. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 2011, no. 5, pp. 255–258. (In Russ.)
  29. Larin S.A., Mun S.A., Brailovskij V.V., Magarill Yu.A., Popov A.N., Eryomina N.A. Incidence of lung cancer and stomach cancer in the Kemerovo region from 1996 to 2015. Fundamental and Clinical Medicine, 2017, no. 2 (2), pp. 43–51. (In Russ.)
  30. Geological and ecological map of the city of Novokuznetsk and the suburban area: a report on geological and ecological studies of the city of Novokuznetsk and the suburban area conducted in 1993-96. Ed. by V.L. Nekipely, N.I. Nemtina, S.A. Nekipelaya. Novokuzneck, Kuzbassekogeocenter LLP Publ. house, 1998. Vol. 2, 1998 p. (In Russ.)
  31. Zhuravleva N.V., Potokina R.R., Ismagilov Z.R., Habibulina E.R. Pollution of snow cover by polycyclic aromatic hydrocarbons and toxic elements on the example of Novokuznetsk. Chemistry in the interests of sustainable development, 2014, vol. 22, no. 5, pp. 445–454. (In Russ.)
  32. Report on the state and environmental protection of the Kemerovo region in 2020 and 2023, Kemerovo, 2023. (In Russ.) Available at: http://kuzbasseco.ru/doklady/o-sostoyanii-okruzhayushhej-sredy-kemerovskoj-oblasti/ (accessed 20 May 2024).
  33. Zubickij B.D., Lyapip V.B., Gaus A.I., Nazarov V.G. Protection of the atmosphere during the modernization of the coke plant. Coke and Chemistry, 1997, no. 4, pp. 37–39. (In Russ.)
  34. Mihajluc A.P., Zajcev V.N., Ivanov S.V., Zubickij B.D. Ecological and hygienic problems of cities with a developed chemical industry. Novosibirsk, CERIS Publ., 1997. 191 p. (In Russ.)
  35. Zhuravlev N.M., Klem-Musatova I.K., Churashev V.N. Assessment of the environmental impact of enterprises in Siberia and the Far East. Region: Economics and Sociology, 2002, no. 4, pp. 88–102. (In Russ.)
  36. Kasimov N.S., Kosheleva N.V., Vlasov D.V., Terskaya E.V. Geochemistry of snow cover in the Eastern District of Moscow. Bulletin of the Moscow University. Ser. 5: Geography, 2012, no. 4, pp. 14–24. (In Russ.)
  37. Saet Yu.E., Revich B.A., Yanin E.P. Environmental geochemistry. Moscow, Nedra Publ., 1990. 335 p. (In Russ.)
  38. Revich B.A., Saet Yu.I., Smirnova R.S., Sorokina E.P. Methodological recommendations for the geochemical assessment of urban pollution by chemical elements. Moscow, IMGRE Publ., 1982. 111 p. (In Russ.)
  39. Methodological recommendations for assessing the degree of atmospheric air pollution in populated areas by metals based on their content in snow cover and soil. Approved by the Chief State Sanitary Doctor of the USSR dated 05.15.1990, no. 5174-90. Moscow, IMGRE Publ., 1990. 17 p. (In Russ.)
  40. Shatilov A.Yu. Material composition and geochemical characteristics of atmospheric precipitation in the territory of the Ob basin. Cand. Diss. Tomsk, 2001. 24 p. (In Russ.)
  41. Talovskaya A.V. Ecogeochemistry of atmospheric aerosols in urbanized areas of southern Siberia (based on the study of the composition of insoluble snow cover sediment). Dr. Dis s. Tomsk, 2022. 373 p. (In Russ.)
  42. Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta, 1995, vol. 59, no. 7, pp. 1217–1232. doi: 10.1016/0016-7037(95)00038-2.
  43. Rudnick R.L. Composition of the continental crust. Treatise on geochemistry, 2003, vol. 3, 659 p. doi: 10.1016/b0-08-043751-6/03016-4.
  44. Hu Z. Upper crustal abundances of trace elements: a revision and update. Chemical Geology, 2008, vol. 253 (3–4), pp. 205–221. doi: 10.1016/j.chemgeo.2008.05.010.
  45. Grigorev N. A. Distribution of chemical elements in the upper part of the continental crust. Yekaterinburg, Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences Publ., 2009. 383 p. (In Russ.)
  46. Glazovskiy N.F. Technogenic flows of matter in the biosphere. Mining and geochemistry of natural ecosystems. Moscow, Nauka Publ., 1982. pp. 7–28 (In Russ.)
  47. Glazovskaya M.A. Geochemistry of natural and man–made landscapes of the USSR. Moscow, Higher School of Economics Publ., 1988. 328 p. (In Russ.)
  48. Archive of weather in Russia. Archive of weather in Kemerovo. (In Russ.) Available at: https://world-weather.ru/archive/russia/kemerovo/ (accessed 20 May 2024).
  49. Kemerovo city heat supply scheme until 2033 (updated for 2020). Supporting materials. Chapter 10 Prospective fuel balances. (In Russ.) Available at: https://kemerovo.ru/sfery-deyatelnosti/gorodskoe-zhkkh/skhema-teplosnabzheniya-goroda-kemerovo-do-2033-goda (accessed 20 May 2024).
  50. Adler Yu.A., Markova E.V., Granovskij Yu.V. Planning an experiment in the search for optimal conditions. Moscow, Nauka Publ., 1976. 140 p. (In Russ.)
  51. Xu W., Han T., Du W., Wang Q., Chen C., Zhao J., Zhang Y., Li J., Fu P., Wang Z. Effects of aqueous-phase and photochemical processing on secondary organic aerosol formation and evolution in Beijing, China. Environ. Sci. Technol, 2017, vol. 51 (2), pp. 762–770. doi: 10.1021/acs.est.6b04498.
  52. Kuang Y., He Y., Xu W., Yuan B., Zhang G., Ma Z., Wu C., Wang C., Wang S., Zhang S., Tao J., Ma N., Su H., Cheng Y., Shao M. Photochemical aqueous-phase reactions induce rapid daytime formation of oxygenated organic aerosol on the North China Plain. Environmental Science & Technology, 2020, vol. 54, no. 7, pp. 3849–3860. doi: 10.1021/acs.est.9b06836.
  53. Xu L., Zhou J., Guo Y., Wu T., Chen T., Zhong Q., Yuan D., Chen P., Ou C. Spatiotemporal pattern of air quality index and its associated factors in 31 Chinese provincial capital cities. Air Quality, Atmosphere & Health, 2017, vol. 10, pp. 601–609. doi: 10.1007/s11869-016-0454-8.
  54. Li L., Qian J., Ou C.-Q., Zhou Y.-X., Guo C., Guo Y. Spatial and temporal analysis of air pollution index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environmental Pollution, 2014, vol. 190, pp. 75–81. doi: 10.1016/j.envpol.2014.03.020.
  55. Dong Z., Brahney J., Kang S., Elser J., Wei T., Jiao X., Shao Y. Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region: new evidences from alpine snow and ice. Earth-Science Reviews, 2020, vol. 211. doi: 10.1016/j.earscirev.2020.103408.
  56. Wei J., Li M., Cribb W., Huang W., Xue L., Sun J., Guo Y., Peng J., Li A., Lyapustin L., Liu H., Wu Y., Song. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys, 2020, vol. 20, no. 6, pp. 3273–3289. doi: 10.5194/acp-20-3273-2020.
  57. Su T., Li Z., Kahn R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors. Atmos. Chem. Phys, 2018, vol. 18, no. 21. doi: 10.5194/acp-18-15921-2018.
  58. Glazunov V.G. Analysis of prospects for modeling mesoclimatic differences between a megalopolis and the surrounding area. MGUL Bulletin is a Forest bulletin, 2000, no. 6, pp. 19–24. (In Russ.)
  59. Draft standards of maximum permissible atmospheric emissions for Kemerovo GRES of Kemerovo Generation JSC. Kemerovo, Kemerovo GRES Publ., 2016. 268 p. (In Russ.)
  60. Zubickij B.D. Substantiation and development of technological processes for modernization of coke chemical production in difficult environmental conditions (on the example of JSC Koks). Cand. Diss. Krasnoyarsk, 2000. 22 p. (In Russ.)
  61. Moskovchenko D.V., Pozhitkov R.Yu., Soromotin A.V. Geochemical characteristics of snow cover in Tobolsk. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2021, vol. 332, no. 5, pp. 156–169. doi: 10.18799/24131830/2021/5/3195 (In Russ.)
  62. Chudinova O.N., Norboeva S.B. Assessment of snow cover pollution in the impact zone of thermal power facilities. Bulletin of the BSU, 2023, no. 1, pp. 121–129. (In Russ.) doi: 10.17150/2500-2759.2023.33(1).121-129.
  63. Arbuzov S.I. Metallicity of Siberian coals. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2007, vol. 311, no. 1, pp. 77–83. (In Russ.)
  64. Arbuzov S.I., Ilenok S.S., Volostnov A.V., Maslov S.G., Arhipov V.S. The forms of uranium in the coals and peat of North Asia. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2011, vol. 319, no. 1, pp. 109–115. (In Russ.)
  65. Yudovich Ya.E. Toxic elements-impurities in fossil coals. Yekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2005. 648 p. (In Russ.)
  66. Bortnikova S.B., Raputa V.F., Devyatova A.Yu., Yudahin F.N. Methods of analyzing snow pollution data in areas of influence of industrial enterprises (on the example of Novosibirsk). Geoecology. Engineering geology, hydrogeology, geocryology, 2009, no. 6, pp. 515–525. (In Russ.)
  67. Onishchuk N.A. Features of the modern snow cover regime and the chemical composition of atmospheric precipitation in the southern part of the Irkutsk region. Cand. Diss. Kazan, 2010. 23 p. (In Russ.)
  68. Yanin E.P. Mercury in the environment of an industrial city. Moscow, IMGRE Publ., 1992. 169 p. (In Russ.)

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».