Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties
- Authors: Voznesenskii А.S.1, Ushakov E.I.1, Kutkin Y.O.1
-
Affiliations:
- University of Science and Technology MISIS
- Issue: Vol 10, No 1 (2025)
- Pages: 5-14
- Section: MINING ROCK PROPERTIES. ROCK MECHANICS AND GEOPHYSICS
- URL: https://journals.rcsi.science/2500-0632/article/view/350722
- DOI: https://doi.org/10.17073/2500-0632-2024-10-316
- ID: 350722
Cite item
Full Text
Abstract
Keywords
About the authors
А. S. Voznesenskii
University of Science and Technology MISIS
Email: asvoznesenskii@misis.ru
ORCID iD: 0000-0003-0926-1808
E. I. Ushakov
University of Science and Technology MISIS
Email: m1800087@edu.misis.ru
ORCID iD: 0000-0003-3579-6515
Ya. O. Kutkin
University of Science and Technology MISIS
Email: kutkin.yo@misis.ru
ORCID iD: 0000-0003-2644-3371
References
Кочанов А. Н., Одинцев В. Н. Волновое предразрушение монолитных горных пород при взрыве. Физико-технические проблемы разработки полезных ископаемых. 2016;(6):38–48. (Trans. ver.: Kochanov A. N., Odintsev V. N. Wave prefracturing of solid rocks under blasting. Journal of Mining Science. 2016;52(6):1080–1089. https://doi.org/10.1134/S1062739116061613) Зверева А. С., Собисевич А. Л., Габсатарова И. П. Добротность геофизической среды восточной зоны Северного Кавказа. Физика Земли. 2024;(1):140–156. https://doi.org/10.31857/S0002333724010091 Грабкин О. В., Замараев С. М., Лащенов В. А. и др. Геология и сейсмичность зоны БАМ (от Байка-ла до Тынды). Структурно-вещественные комплексы и тектоника. Новосибирск: Наука; 1983. 192 с. Griffith A. A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal So-ciety of London. Series A, Containing Papers of a Mathematical or Physical Character. 1921;221(582–593):163–198. https://doi.org/10.1098/rsta.1921.0006 Справочник по коэффициентам интенсивности напряжений. Под ред. Ю. Мураками. Т. 2. М.: Мир; 1990. 1016 с. Sezgin J.-G., Bosch С., Montouchet A. et al. Coupled hydrogen and phosphorous induced initiation of internal cracks in a large 18MnNiMo5 component. Engineering Failure Analysis. 2019;104:422–438. https://doi.org/10.1016/j.engfailanal.2019.06.014 Wang Y., MacDonald A., Xu L. et al. Engineering critical assessment and variable sensitivity analysis for as-welded S690 steels. Engineering Failure Analysis. 2020;109:104282. https://doi.org/10.1016/j.engfailanal.2019.104282 Beygi R., Carbas R. J. C., Barbosa A. Q. et al. A comprehensive analysis of a pseudo-brittle fracture at the interface of intermetallic of η and steel in aluminum/steel joints made by FSW: Microstructure and fracture behavior. Materials Science and Engineering: A. 2021;824:141812. https://doi.org/10.1016/j.msea.2021.141812 Eskandari S., Andrade Pires F. M., Camanho P. P. et al. Analyzing the failure and damage of FRP composite laminates under high strain rates considering visco-plasticity. Engineering Failure Analysis. 2019;101:257–273. https://doi.org/10.1016/j.engfailanal.2019.03.008 Mega M., Banks-Sills L. Comparison of methods for determination of fracture toughness in a multi-directional CFRP laminate. Procedia Structural Integrity. 2020;28:917–924. https://doi.org/10.1016/j.prostr.2020.11.064 Ryabchikov A., Kiviste M., Udras S.M. et al. The experimental investigation of the mechanical properties of steel fibre-reinforced concrete according to different testing standards. Agronomy Research. 2020;18:969–979. https://doi.org/10.15159/ar.20.070 Conforti A., Minelli F., Plizzari G.A., Tiberti G. Comparing test methods for the mechanical characterization of fiber reinforced concrete. Structural Concrete. 2018;19(3):656–669. https://doi.org/10.1002/suco.201700057 Valean C., Maravina L., Marghita M. et al. The effect of crack insertion for FDM printed PLA materials on Mode I and Mode II fracture toughness. Procedia Structural Integrity. 2020;28:1134–1139. https://doi.org/10.1016/j.prostr.2020.11.128 Wang Y., Hu X. Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples. Rock Mechanics and Rock Engineering. 2017;50(1):17–28. https://doi.org/10.1007/s00603-016-1098-6 Rong H., Wang Y. J., Zhao X. Y., She J. Research on fracture characteristics of rock-concrete interface with different roughness. Gongcheng Lixue/Engineering Mechanics 2019;36(10):96–103. (In Chinese) https://doi.org/10.6052/j.issn.1000-4750.2018.09.0485 Kožar I., Torić Malić N., Simonetti D., Smolčić Ž. Bond-slip parameter estimation in fiber reinforced concrete at failure using inverse stochastic model. Engineering Failure Analysis. 2019;104:84–95. https://doi.org/10.1016/j.engfailanal.2019.05.019 Kožar I., Bede N., Mrakovčić S., Božić Ž. Layered model of crack growth in concrete beams in bending. Procedia Structural Integrity. 2021;31:134–139. https://doi.org/10.1016/j.prostr.2021.03.022 Lu D. X., Bui H. H., Saleh M. Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test. Engineering Fracture Mechanics. 2020;242:107452. https://doi.org/10.1016/j.engfracmech.2020.107452 Nazerigivi A., Nejati H. R., Ghazvinian A., Najigivi A. Effects of SiO2 nanoparticles dispersion on concrete fracture toughness. Construction and Building Materials. 2018;171:672–679. https://doi.org/10.1016/j.conbuildmat.2018.03.224 Seitl S., Ríos J. D., Cifuentes H. Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens. Frattura ed Integrità Strutturale. 2017;11(42):56–65. https://doi.org/10.3221/IGF-ESIS.42.07 Ouchterlony F., Franklin J. A., Zongqi S. et al. Suggested methods for determining the fracture toughness of rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1988;25(2):71–96. Voznesenskii A. S., Osipov Y. V., Ushakov E. I. et al. Effect of weak inclusions on the fracture toughness of interfaces between various rocks. Engineering Failure Analysis. 2023;146:107140. https://doi.org/10.1016/j.engfailanal.2023.107140 Voznesenskii A. S., Osipov Y. V., Ushakov E. I., Semyonov Y. G. Fracture toughness of interfaces between various minerals and rocks. Procedia Structural Integrity. 2023;46:155–161. https://doi.org/10.1016/j.prostr.2023.06.027 Mochugovskiy A. G., Mikhaylovskaya A. V., Zadorognyy M. Y., Golovin I. S. Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy. Journal of Alloys and Compounds. 2021;856:157455. https://doi.org/10.1016/j.jallcom.2020.157455 Blanter M. S., Golovin I. S., Neuhäuser H., Sinning H. R. Internal friction in metallic materials. A handbook. Springer Series in Materials Science. Springer-Verlag Berlin, Heidelberg; 2007. 541 p. Ushakov E. I., Voznesenskii A. S. The fracture toughness of interfaces between rocks and concrete. The results of experimental investigations. Mendeley Data. 2024;1. https://doi.org/10.17632/792rfcf59m.1
Supplementary files
