🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

FEATURES OF PROPAGATION OF COMPRESSIONAL LONG-PERIOD OSCILLATIONS PENETRATING FROM THE INTERPLANETARY MEDIUM IN THE MAGNETOSPHERE—IONOSPHERE SYSTEM

Cover Page

Cite item

Full Text

Abstract

We have studied properties of Pi3 pulsations with a period of ~30 min in the magnetosphere—ionosphere system, using satellite and ground-based observations. According to the data from ground-based magnetic stations in the pre-noon sector of the magnetosphere, propagation of pulsations was revealed in azimuth from the day side to the night side at a velocity 3–9 km/s in the band of corrected geomagnetic latitudes Φʹ=76–79°. Along the meridian, the signal propagated poleward at a velocity 0.5–5 km/s. Analysis of signal spectra at stations located along different meridians shows three maxima: one latitude-independent maximum at a frequency of 0.55 mHz, and two latitude-dependent maxima at frequencies of 0.82 and 0.96 mHz respectively, at higher and lower latitudes. The first maximum corresponds to ULF waves penetrating from the solar wind; the other two, to magnetospheric field line resonances. The equivalent current system (ECS) during the pulsation recording was obtained by two methods: the method of spherical elementary current systems and the magnetogram inversion technique. Analysis of ECS derived by both methods has demonstrated that they match each other. The ECS during pulsations in the pre-noon sector is a large vortex consisting of smaller vortices that propagate in the ionosphere along the “sea-land” boundary line, i.e. meridional poleward propagation at velocities close to the average pulsation propagation velocities prevailed. According to the map of field-aligned current distribution in the ionosphere, the width of the maximum of the westward electrojet lies at the latitude of the ECS maximum (in the south of the large vortex) on the boundary between the regions of inflowing and outflowing field-aligned currents (regions 1 and 2), where field line resonances are observed. The obtained ECS corresponded to the DP2 current system with a predominant westward electrojet in the pre-noon and night sectors. Satellite data analysis has shown the following. In the solar wind, ULF waves in the Pi3 pulsation range propagated at a velocity of 186.4 km/s, which is significantly lower than the velocity of the average being as high as 550 km/s. This velocity is explained by the fact that the waves propagate toward the Sun and are carried by the solar wind to Earth. In the magnetosphere, pulsations with a predominant compression component propagated from the night side to the day side at a velocity 90–110 km/s; from the delays in the onset of maxima of energetic electron differential fluxes, velocities 20–40 km/s were identified.
Pulsations in this event were caused by both external (oscillations in the solar wind) and internal sources (magnetospheric resonator, which could be excited, among other things, by a substorm). The dynamics of the “fine structure” of a large vortex - small vortices, in the magnetosphere as a whole coincides in propagation velocity and direction with geomagnetic pulsations.

About the authors

Aleksey Vladimirovich Moiseev

Email: moiseev@ikfia.ysn.ru
ORCID iD: 0000-0003-1206-8099
candidate of physical and mathematical sciences

Vasiliy Ivanovich Popov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS

Email: volts@mail.ru
candidate of physical and mathematical sciences

Vladimir Vilenovich Mishin

Institute of Solar Terrestrial Physics SB RAS

Email: vladm@iszf.irk.ru
doctor of physical and mathematical sciences

Yury Vladimirovich Penskikh

Institute of Solar Terrestrial Physics SB RAS

Email: penskikh@iszf.irk.ru

References

  1. Abraham-Shrauner B., Yun S.H. Interplanetary shocks seen by AMES plasma probe on Pioneer 6 and 7. J. Geophys. Res. 1976, vol. 81, pp. 2097–2102.
  2. Akasofu S.I., Kimball D.S. The dynamics of the aurora: I. Instabilities of the aurora. J. Atmos Terr. Phys. 1964, vol. 26, pp. 205–211.
  3. Alimaganbetov M., Streltsov A.V. ULF waves observed during substorms in the solar wind and on the ground. J. Atmos. Solar-Terr. Phys. 2018, vol. 181, pp. 10–18.
  4. Baumjohann W., Treumann R.A. Basic Space Plasma Physics. Imperial College Press, London, 1996.
  5. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnetic variations and storms. Novosibirsk: Nauka, 1979, 248 p. (In Russian).
  6. Colburn D.S., Sonett C.P. Discontinuities in the solar wind. Space Sci. Rev. 1966, vol. 5, pp. 439–506. doi: 10.1007/BF00240575.
  7. Eselevich M.V., Eselevich V.G. Fractal structure of the heliospheric plasma sheet in the Earth’s orbit. Geomagnetism and Aeronomy. 2005, vol. 45, no. 3, pp. 326–336.
  8. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, no. A09213. doi: 10.1029/2012JA017683.
  9. Glassmeier K.-H., Othmer C., Gramm R., Stellmacher M., Engebretson M. Magnetospheric field-line resonances: A comparative planetology approach. Earth Environment Sci. 1999, vol. 20, pp. 61–109.
  10. Hada T., Kennel C.F. Nonlinear evolution of slow waves in the solar wind. J. Geophys. Res. 1985, vol. 90, p. 531.
  11. Han D.-S., Yang H.-G., Chen Z.-T., et al. Coupling of perturbations in the solar wind density to global Pi3 pulsations: A case study. J. Geophys. Res. 2007, vol. 112, A05217. doi: 10.1029/2006JA011675.
  12. Huang C.-S. Global Pc5 pulsations from the polar cap to the equator: Wave characteristics, phase variations, disturbance current system, and signal transmission. J. Geophys. Res. 2021, vol. 126, e2020JA029093. doi: 10.1029/2020JA029093.
  13. Kepko L., Spence H.E. Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res. 2003, vol. 108, p. 1257. doi: 10.1029/2002JA009676.
  14. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: Influence of a transition layer. Ann. Geophys. 2003, vol. 21, pp. 1083–1093.
  15. Lunyushkin S.B., Penskikh Y.V. Diagnostics of auroral oval boundaries on the basis of the magnetogram inversion technique. Sol.-Terr. Phys. 2019, vol. 5, no. 2, pp. 97–113. doi: 10.12737/stp-52201913.
  16. Mansurov S.M. Magnetic disturbances. Moscow: Publ. House of the USSR Academy of Sciences, 1959, no. 1, pp. 64–71. (In Russian).
  17. Mishin V.M. The magnetogram inversion technique and some applications. Space Sci. Rev. 1990, vol. 53, no. 1-2, pp. 83–163. doi: 10.1007/bf00217429.
  18. Moiseev A.V., Starodubtsev S.A., Mishin V.V. Features of excitation and azimuthal and meridional propagation of long-period Pi3 oscillations of the geomagnetic field on December 8, 2017. Sol.-Terr. Phys. 2020, vol. 6, no. 3, pp. 56–72. doi: 10.12737/stp-63202007.
  19. Moiseev A.V., Popov V.I., Starodubtsev S.A. Comparative analysis of the propagation of magnetic variations and equivalent current vortices of geomagnetic Pc5 pulsations along the meridian and azimuth. Geomagnetism and Aeronomy. 2024a, vol. 64, no. 4, pp. 548–566. doi: 10.31857/S0016794024040093.
  20. Moiseev A.V., Popov V.I., Starodubtsev S.A. Investigating azimuthal propagation of Pc5 geomagnetic pulsations and their equivalent current vortices from ground-based and satellite data. Sol.-Terr. Phys. 2024b, vol. 10, no. 3, pp. 104–115. doi: 10.12737/stp-103202412.
  21. Nadubovich Yu.A. Collection of articles. Results of research on international geophysical projects. Polar aurora. Moscow: Nauka, 1967, no. 14, p. 77.
  22. Parkhomov V.A., Mishin V.V., Borovik L.V. Long-period geomagnetic pulsations caused by the solar wind negative pressure impulse on March 22, 1979 (CDAW-6). Ann. Geophys. 1998, vol. 16, pp. 134–139.
  23. Parhomov V.A., Borodkova N.L., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Chilikin V.E. Features of the impact of the solar wind diamagnetic structure on Earth’s magnetosphere. Sol.-Terr. Phys. 2017, vol. 3, no. 4, pp. 47–62. doi: 10.12737/stp-34201705.
  24. Penskikh Yu.V. Applying the method of maximum contributions to the magnetogram inversion technique. Sol.-Terr. Phys. 2020, vol. 6, no. 4, pp. 67–76. doi: 10.12737/stp-64202009.
  25. Penskikh Yu.V., Lunushkin S.B., Kapustin V.E. Geomagnetic method for automatic diagnostics of auroral oval boundaries in two hemispheres of Earth. Sol.-Terr. Phys. 2021, vol. 7, no. 2, pp. 57–69. doi: 10.12737/stp-72202106.
  26. Reeves G.D., Henderson M.G., McLachlan P.S., Belian R.D., Friedel R.H.W., Korth A. Radial propagation of substorm injections. Proc. the Third International Conference on Substorms. Eur. Space Agency Spec. Publ. 1996, ESA SP‐389. p. 579.
  27. Saito T. Geomagnetic pulsations. Space Sci. Rev. 1969, vol. 10, iss. 3, pp. 319–412.
  28. Saito T. Long-period irregular magnetic pulsation Pi3. Space Sci. Rev. 1978, vol. 21, pp. 427–467. doi: 10.1007/BF00173068.
  29. Saito T., Matsushita S. Geomagnetic pulsations associated with sudden commencements and sudden impulses. Planetary Space Sci. 1967, vol. 15, pp. 573–587.
  30. Samsonov V.P., Zaretsky N.S. Azimuthal and geographical distribution of auroral rays. Geomagnetism and Aeronomy. 1963, vol. 3, no. 2, p. 246.
  31. Senko P.K. Coastal effect in magnetic variations. M.: 1959, 61 p.
  32. Shpynev G.B., Mishin V.M., Mishin E.V. Research on geomagnetism, aeronomy and physics of the Sun. M.: Nauka, 1977, vol. 43, pp. 3–13.
  33. Tsyganenko N.A., Sitnov M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 2005, vol. 110, A03208. doi: 10.1029/2004JA010798.
  34. Vanhamäki H., Juusola L. Introduction to spherical elementary current systems. Ionospheric Multi-Spacecraft Analysis Tools. 2020, vol. 17, pp. 5–33.
  35. doi: 10.1007/978-3-030-26732-2_13.
  36. URL: https://supermag.jhuapl.edu/mag/ (accessed March 7, 2024).
  37. URL: http://cdaweb.gsfc.nasa.gov/ (accessed March 7, 2024).
  38. URL: https://link.springer.com/chapter/10.1007/978-3-030-26732-2_2#Sec18 (accessed March 7, 2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».