Development of the veterinary expert system

Abstract

Veterinary medicine is an area where modern technology can have a significant impact. The application of expert systems in this field has not yet been fully explored. Expert systems can process large amounts of data, including symptoms, disease history and other parameters to provide accurate and rapid diagnoses. This is especially valuable in situations where rapid intervention can save an animal's life. These systems can serve as a supportive tool for veterinarians, especially in complex or rare disease cases. They can provide recommendations based on the latest research and clinical practices. In agriculture, expert systems can analyze data on the health of the entire herd and identify possible problems or trends, helping farmers and veterinarians to take timely action. This article focuses on the development of a veterinary expert system that reflects current animal health needs. The authors perform a detailed analysis of existing veterinary systems, highlighting key functionalities needed by veterinary and agricultural professionals. One unique aspect of the paper is the use of symptom-complexity weighting and probability calculations of diagnosable diseases, which can make a significant contribution to the accuracy and efficiency of animal disease diagnosis. The paper can serve as a useful resource for veterinary specialists as well as software developers involved in the creation of intelligent systems in medical and agricultural applications.

References

  1. Введение в экспертные системы. Основные понятия и определения [Электронный ресурс]. URL: http://www.habarov.spb.ru/new_es/exp_sys/es01/es1.htm (дата обращения: 10.08.2023).
  2. Staroverova N. A., Shustrova M. L., Staroverov S. A., Dykman L. A. Development of a Neurocomputer Modular Information System for Cancerous Diseases Diagnostics in Animals // Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2020. No. 2(131). Pp. 75-84.
  3. Программы для сельского хозяйства «Коралл» [Электронный ресурс]. URL: https://www.korall-agro.ru/tree_diag_an.htm (дата обращения: 10.08.2023).
  4. Шопагулов О. А., Третьяков И. И., Исмаилова А. А. Использование экспертных систем в ветеринарии // Вестник Университета Шакарима. Серия технические науки. 2020. № 3(91). С. 96-102.
  5. Розенберг И. Н., Цветков В. Я. Среда поддержки интеллектуальных систем // Транспорт Российской Федерации. Журнал о науке, практике, экономике. 2011. № 6 (37). С. 63-65.
  6. Джарратано Д., Райли Г. Экспертные системы: принципы разработки и программирование, 4-е издание. Издательский дом Вильямс, 2007.
  7. Бердышев А. С., Калиева К. А., Кантуреева М. А. О методологии проектирования экспертных систем // Проблемы информатики. 2013. № 1(18). С. 56-62.
  8. Частиков А. П., Гаврилова Т. А., Белов Д. Л. Разработка экспертных систем. Среда CLIPS. СПб: БХВПетербург, 2003.
  9. Adeli A., Neshat M. A fuzzy expert system for heart disease diagnosis // Proceedings of international multi conference of engineers and computer scientists, Hong Kong. 2010. Vol. 1. Pp. 134-139.
  10. Шопагулов О. А., Третьяков И. И., Исмаилова А. А. Экспертная система для диагностики заболевания коров // Сейфуллинские чтения – 16: Молодежная наука новой формации – будущее Казахстана. 2020. Т. 1. Ч. 3. С. 161-163.
  11. Paolo L., Paolo Z. Improving the automated monitoring of dairy cows by integrating various data acquisition systems // Computers and electronics in agriculture. 2009. Vol. 68. Pp. 62-67.
  12. Munirah M. Y., Suriawati S., Teresa P. P. Design and development of online dog diseases diagnosing system // International Journal of Information and Education Technology. 2016. Vol. 6. № 11. P. 913.
  13. Tudorache T., Nyulas C., Noy N. F., Musen M. A. WebProte´ge´: A collaborative ontology editor and knowledge acquisition tool for the web // Semant Web. 2013. Vol. 4. № 1. Pp. 89-99.
  14. Гибадуллин Р. Ф. Потокобезопасные вызовы элементов управления в обогащенных клиентских приложениях // Программные системы и вычислительные методы. 2022. № 4. С. 1-19.
  15. Гибадуллин Р. Ф., Викторов И. В. Неоднозначность результатов при использовании методов класса Parallel в рамках исполняющей среды .NET Framework // Программные системы и вычислительные методы. 2023. № 2. С. 1-14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).