Применение гомоморфной фильтрации для мультипликативно взаимодействующих сигналов и окон выборки данных при периодическом оценивании

Обложка

Цитировать

Полный текст

Аннотация

Объектом исследования являются системы передачи информации. В качестве предмета исследования рассматривается повышение качества информации на приемной стороне. Авторы подробно рассматривают такие аспекты темы, как формирование процедуры, существенно снижающей влияние межсимвольной интерференции, обусловленной взаимодействием самого сигнала и окна выборки. Этот источник ошибок, как правило, является доминирующим при скоростях передачи информации близких к пропускной способности канала связи. Исследования по снижению влияния межсимвольных искажений являются важными и актуальными и в последние годы им посвящено значительное количество работ. Рассматривалась модель сигналов, имитирующая передачу последовательности не модулированных импульсов типа меандр. Предполагалось, что обработка входящего потока импульсов производится в режиме реального времени на основе процедур периодического оценивания каждого элемента. Методической основой исследования являлись методы математического моделирования систем передачи информации и методы линеаризации с использованием обобщенного принципа суперпозиции. Основным результатом проведенного исследования является предложенная методика формирования гомоморфного фильтра для обработки входящего потока импульсов в режиме реального времени на основе процедур периодического оценивания каждого элемента. Алгоритм его функционирования обеспечивает преобразование мультипликативного взаимодействия сигнала и окон выборки в аддитивное и обеспечивает разделение мультипликативно взаимодействующих передаваемого информационного сигнала и окна выборки в канале связи. Полученная процедура, снижающая влияние межсимвольной интерференции на приемной стороне, является реализацией оптимального фильтра на основе гомоморфного преобразования. Получена оценка величины межсимвольной интерференции при использовании предложенного способа обработки. Продемонстрирована эффективность метода при потоковой обработке сигналов. Выражения получены в самом общем виде и могут быть детализированы в рамках описанной модели передачи информации, что является предметом дальнейшего исследования.

Об авторах

Юрий Павлович Сердюков

Северо-Западный государственный медицинский университет имени И.И. Мечникова

Email: Yurii.Serdyukov@szgmu.ru
профессор; кафедра медицинской информатики и физики;

Виктор Яковлевич Гельман

Северо-Западный государственный медицинский университет им. И.И. Мечникова Минздрава РФ

Email: vyagelman@hotmail.com
профессор; кафедра медицинской информатики и физики;

Список литературы

  1. Фыонг Д. В. Классификация систем передачи информации, использующих единый ресурс. // Радиотехника и электроника: материалы 55-й юбилейной научной конференции аспирантов, магистрантов и студентов.Минск, 2019. С. 57-58.
  2. Землянухин П. Преобразование сигналов нелинейными цепями систем передачи информации. Litres, 2022. 142 с.
  3. Канавин С.В., Панычев С.Н., Самоцвет Н.А. Метод повышения помехоустойчивости систем связи и передачи информации на основе нелинейной корреляционной фильтрации сигналов // Вестник Воронежского института МВД России. 2021. №. 1. С. 143-152.
  4. Нефедов В.И., Сигов А.С. Основы радиоэлектроники и связи. Под ред. В. И. Нефедова. М.: Высшая школа, 2009. 735 с.
  5. Рудько А.С., Филатов В.И., Немчанинов А.С. Способ передачи данных по радиоканалу сверхширокополосным импульсным сигналом в космических системах связи // T-Comm-Телекоммуникации и Транспорт. 2017. Т. 11. №. 2. С. 4-9.
  6. Никишкин П.Б., Витязев В.В. Методы широкополосной передачи данных на основе сигналов с частотным разделением каналов // Цифровая обработка сигналов. 2020. Т. 3. С. 45-49.
  7. Nouri A., Asvadi R., Chen J., Vontobel P.O. Finite-Input Intersymbol Interference Wiretap Channels. IEEE Information Theory Workshop (ITW). At: Kanazawa, Japan, 2021, pp. 1-7.
  8. Kavcic A., Ma X., Mitzenmacher M. Binary Intersymbol Interference Channels: Gallager Codes, Density Evolution, and Code Performance Bounds. IEEE Trans. Inform. Theory, 2003. Vol. 49, no.7, pp. 1636-1652.
  9. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: Изд. Дом «Вильямс», 2003. 1104 с.
  10. Артюшенко В.М., Воловач В.И. Обнаружение сигналов при воздействии мультипликативных помех на фоне аддитивного шума. // Журнал радиоэлектроники, 2020, № 7. С. 1-24.
  11. Полушин П.А., Архипов Н.А., Шалина В.В. Модификация метода кодирования при борьбе с межсимвольными искажениями цифровых сигналов с модуляцией QPSK. // Радиотехнические и телекоммуникационные системы, 2023, №4. С. 33-40.
  12. Викулов А.С. Модель межканальной интерференции в сетях IEEE 802.11 в задаче оценки пропускной способности. // Радиотехнические и телекоммуникационные системы. 2019, №1. С. 36-45.
  13. Qian B., Wang X., Wen J., Zhang S., Chen C. Novel Intersymbol Interference Cancellation Scheme to Enable Parallel Computational and High-Performance Faster-Than-Nyquist Signaling. IEEE Access, 2017. Vol. 5, pp. 24758-24765.
  14. Егорова Е.В., Аксяитов М.Х., Рыбаков А.Н. Обработка информации с использованием гомоморфных фильтров // Инновации в науке и практике. 2018. С. 153-160.
  15. Барбарина Е.Б., Шеховцов Д.В., Мушта А.И. Генератор модулированных по частоте прямоугольных импульсов в субмикронном технологическом базисе // Вестник Воронежского государственного технического университета. 2017. Т. 13. №. 2. С. 55-57.
  16. Сердюков Ю.П. Метод эффективной обработки импульсно-модулированных сигналов // Технология и конструирование в электронной аппаратуре. 2004. № 5. С. 36-42.
  17. Сердюков Ю.П. Концентрирующие интегральные преобразования при обработке сигналов с широтно-импульсной модуляцией // Технологии приборостроения. 2004. № 4. С. 50-63.
  18. Клюев Л.Л. Теория электрической связи. М.: Новое знание, Инфра-М, 2019. 448 с.
  19. Хургин Я.И., Яковлев В.П. Финитные функции в физике и технике. (2-е издание). Издательство: УРСС, 2010 г. 416 с.
  20. Белов А.Д., Полушин П.А. Методы "мягкой" и "жесткой" коррекции для борьбы с межсимвольными искажениями цифровых сигналов. // Проектирование и технология электронных средств. 2020, № 1. С. 33-37.
  21. Макаров С.Б., Завьялов С.В., Овсянникова А.С. Оптимизация формы сигналов с квадратурной амплитудной модуляцией с использованием критерия заданной скорости спада уровня внеполосных излучений. // Известия ВУЗ России. Радиоэлектроника, 2022, № 4(25). С. 6-22.
  22. Зубарев В.Ю., Пономаренко Б.В., Вострецов А.Г. О выборе элементарных сигналов для радиосистем со сложными сигналами. // Доклады АН Высшей школы РФ, 2023, № 1(58). С. 39-55.
  23. Королев А.Д., Кореневский Н.А., Кузнецов Д.Н. и др. Интеллектуальные программно-аппаратные комплексы передачи информации в телемедицинских сетях. 2-е изд., испр. и доп. Томск : Издательский дом Томского государственного университета, 2019. 359 с.
  24. Лобов Е.М., Алаа А. Обзор существующих методов коррекции межсимвольных искажений радиосигналов в цифровых системах связи с использованием машинного обучения. // Телекоммуникации и информационные технологии. 2023, №1. С. 109-119.
  25. Tengtrairat N., Woo W.L., Dlay S.S., Gao B. Online noisy single-channel source separation using adaptive spectrum amplitude estimator and masking. IEEE Transactions on Signal Processing. 2015. Vol 64, no. 7, pp. 1881-1895.
  26. Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований. М.: Наука, 1969. Т. 1. 344 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».