Analysis of approaches to creating a «Smart Greenhouse» system based on a neural network

Abstract

The study addresses the crucial topic of designing and implementing smart systems in agricultural production, focusing on the development of a "Smart Greenhouse" utilizing neural networks. It thoroughly examines key technological innovations and their role in sustainable agriculture, emphasizing the collection, processing, and analysis of data to enhance plant growth conditions. The research highlights the efficiency of resource use, management of humidity, temperature, carbon dioxide levels, and lighting, as well as the automation of irrigation and fertilization. Special attention is given to developing adaptive algorithms for predicting optimal conditions that increase crop yield and quality while reducing environmental impact and costs. This opens new avenues for the sustainable development of the agricultural sector, promoting more efficient and environmentally friendly farming practices. Utilizing a literature review, comparative analysis of existing solutions, and neural network simulations for predicting optimal growing conditions, the study makes a significant contribution to applying artificial intelligence for greenhouse microclimate management. It explores the potential of AI in predicting and optimizing growing conditions, potentially leading to revolutionary changes in agriculture. The research identifies scientific innovations, including the development and testing of predictive algorithms that adapt to changing external conditions, maximizing productivity with minimal resource expenditure. The findings emphasize the importance of further studying and implementing smart systems in agriculture, highlighting their potential to increase yield and improve product quality while reducing environmental impact. In conclusion, the article assesses the prospects of neural networks in the agricultural sector and explores possible directions for the further development of "Smart Greenhouses".

References

  1. Taki, M. "Solar thermal modeling and application in greenhouses"/ M. Taki, A. Rohani, M. Rahmati-Joneidabad // Info Proc Agri, 5 (2018), pp. 83-113. doi: 10.1016/J.inpa.2017.10.003.
  2. Huihui, Yu "Temperature prediction in a Chinese solar greenhouse based on LS-SVM optimized with improved PSO" / Huihui Yu, Yinyi Chen, Shahbaz Gul Hassan, Daoliang Li// Comput Electron Agric, 122 (2016), pp. 94-102. doi: 10.1016/J.compag.2016.01.019.
  3. Taki, M. "The relationship of energy and yield costs and sensitivity analysis for growing tomatoes in greenhouses in Iran" / M.Taki, R.Abdi, M.Akbarpour, H.Ghasemi-Mobtaker // Agric Eng Int: CIGR J, 15 (2013), pp. 59-67. ISSN:16821130.
  4. Abdel Ghani, A.M. "The use of solar energy by greenhouses: general relations" / A.M. Abdel Ghani, I.M. Helal // Renewable Energy, 36 (2011), pp. 189-196. doi: 10.1016/j.renene.2010.06.020.
  5. Nielsen, H. "Identification of transfer functions for regulating air temperature in a greenhouse" / H.Nielsen, P.Madsen // J Agric Eng Res, 60 (1995), pp. 25-34. doi: 10.1006/jaer.1995.1093.
  6. Dariushi, E. "Labyrinth prediction of internal parameters of a tomato greenhouse in a semi-arid zone using a time series model of artificial neural networks" / E. Dariushi, K. Aassif, L. Lekush, G. Buirden // Measurement, 42 (2009), pp. 456-463. doi: 10.1016/J.measurement.2008.08.013
  7. Кацупеев, А. А. Постановка и формализация задачи формирования информационной защиты распределённых систем / А. А. Кацупеев, Е. А. Щербакова, С. П. Воробьев // Инженерный вестник Дона. – 2015, 34, c. 21. – EDNTXTMHJ.
  8. Abdi, R. "Analysis of energy consumption and greenhouse gas emissions from agricultural production" / R. Abdi, M. Taki, M. Akbarpour // Int J Nat Eng Sci,6 (2012), pp. 73-79. ISSN: 026322410.
  9. Ruano, A.E. "Forecasting building temperature using neural network models" / A.E. Ruano, E.M. Crispim, E.Z.E. Conceicao, M.Lucio // Energy Build, 38 (2006), pp. 682-694. doi: 10.1016/J.enbuild.
  10. He, F. "Modeling of air humidity in a greenhouse using an artificial neural network and analysis of the main components" / F. He, S. Ma // Prog Electron-X. Sciences, 71 (2010), pp. 19-23. doi: 10.1016/J.compag.2009.07 0.011.
  11. Taki, M. "Models of heat transfer and MLP neural networks for predicting internal environmental variables and energy losses in a semi – solar greenhouse" / M. Taki, Yu. Ajabshirchi, S. F. Ranjbar, A. Rohani, M. Matlub // Energy Build, 110 (2016), pp. 314-329. doi: 10.1016/j.enbuild.2015.11.010.
  12. Ilyas, S.A. "Neural network logic sensor RBF for monitoring technological emissions" / Ilyas S.A., Elshafey M., Habib M.A. // Control Eng Practice, 21 (2013), pp. 962-970. doi: 10.1016/J.conengprac.2013.01.007.
  13. Воробьев, С. П. Исследование модели транзакционной системы с репликацией фрагментов базы данных, построенной по принципам облачной среды / С. П. Воробьев, В. В. Горобец // Инженерный вестник Дона, 2012, 22, с. 49. – EDNPRXKMH

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).