Investigation of stochastic models of packet generation in computer networks

Capa

Citar

Texto integral

Resumo

Stochastic packet generation models are models that are used to generate traffic in computer networks with certain characteristics. These models can be used to simulate network activity and test network performance. Standard data transmission on the network is packet generation with delays, in which packets are sent at certain intervals. Various stochastic models can be used to generate delayed packets, including uniform distribution, exponential distribution, and Erlang distribution. In this work, an experimental setup was assembled and a client-server application was developed to conduct research and analyze the performance of the data transmission channel. An algorithm has been proposed that allows to restore the moment characteristics of a random value of the interval between packets for further use of queuing models. The analysis of the distribution laws on the performance of the experimental network sample was performed and estimates of the efficiency of channel use and the average packet generation time in network segments, as well as histograms of delays according to the distribution laws, were obtained. An experimental setup was created, and a client-server application was developed to analyze the performance of the data transmission channel. An algorithm for restoring the moment characteristics of the time intervals between packets is proposed. The analysis of the distribution laws on network performance was carried out, estimates of the efficiency of channel use and the average packet generation time in network segments were obtained, as well as histograms of delays according to the distribution laws. The generation of packets with delays according to stochastic distribution laws (uniform, exponential, Erlang) is of great importance in modeling and analyzing the operation of network systems. Also, the generation of packets with delays according to the above-mentioned distribution laws allows testing and debugging of network applications and devices in conditions close to real ones. This allows to identify possible problems and improve the operation of network systems. As a result of the experiment, an algorithm was proposed that allows to restore the moment characteristics of a random value of the interval between packets for further use of queuing models. Also, the analysis of the influence of distribution laws on the performance of the experimental network sample was performed and estimates of the efficiency of channel use and the average packet generation time in network segments, as well as histograms of delays according to distribution laws, were obtained.

Bibliografia

  1. Жукова Г.Н. Карта коэффициентов асимметрии и эксцесса в преподавании теории вероятностей и математической статистики// Концепт 2015. №8. С. 1-4.
  2. Дмитриев Е.И., Медведев А.В. P-генератор случайных чисел, распределенных по экспоненциальному закону// Актуальные проблемы авиации и космонавтики 2011. №7. Том 1. С. 316-317.
  3. Распределение Эрланга URL: http://algolist.ru/maths/matstat/erlang/index.php#:~:text=%D0%A0%BC. (Дата обращения 06.03.2023).
  4. Как пользоваться Wireshark для анализа трафика. URL: https://losst.pro/kak-polzovatsya-wireshark-dlya-analiza-trafika (Дата обращения 06.03.2023).
  5. Приложение для генерации пакетов в компьютерных сетях с помощью стохастических моделей распределения. URL: https://elibrary.ru/item.asp?id=50133060
  6. Тарасов В.Н., Бахарева Н.Ф., Горелов Г.А., Малахов С.В. Анализ входящего трафика на уровне трех моментов распределений временных интервалов// Информационные технологии 2014. №9. С. 54-59.
  7. Эмуляция влияния глобальных сетей. URL: https://habr.com/ru/articles/24046/ (Дата обращения 10.05.2023).
  8. Руководство по настройке производительности. URL: http://www.regatta.cs. msu.su/doc/usr/share/man/info/ru_RU/a_doc_lib/aixbman/prftungd/2365c91.htm (Дата обращения 10.05.2023).
  9. Алгоритмы сети Ethernet/Fast Ethernet. URL: https://intuit.ru/studies/professional_retraining/943/courses/57/lecture/1690?page=2 (Дата обращения 10.05.2023).
  10. Снабжение пакетов данных точными временными метками в системах сетевого мониторинга. URL: http://www.treatface.ru/solutions/sistemy-setevogo-monitoringa/snabzhenie-paketov-dannykh-tochnymi-vremennymi-metkami-v-sistemakh-setevogo-monitoringa (Дата обращения 10.05.2023)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).