Analysis of the tax sensitivity of particular sectors of the economy
- Authors: Gerasimova A.E.1
-
Affiliations:
- Issue: No 4 (2024)
- Pages: 64-79
- Section: Articles
- URL: https://journals.rcsi.science/2454-065X/article/view/360974
- EDN: https://elibrary.ru/XTTGCB
- ID: 360974
Cite item
Full Text
Abstract
The article is devoted to the quantitative assessment of the tax sensitivity of particular sectors of the economy. The subject of the study is a system of indicators characterizing the sectors of the economy at the macro and micro levels. The purpose of the study is to analyze the dependence of economic sectors on the tax burden. The paper focuses on the importance of taxes for the economic growth of the country's economy and sectoral differences caused by the level of technological development, regional conditions, as well as government regulation. A methodological approach developed by the author allowed to assess the tax sensitivity of individual industries, tested on the most important sectors for the Russian budget. The author analyzes the tax burden and revenues to the consolidated budget, identifies the industries that have the greatest impact on the budget and builds models for them that allow quantifying tax sensitivity across a set of organizations. Modern machine learning methods such as decision tree, gradient boosting, nearest neighbor method, as well as the classical linear regression method were used as analysis methods. The scientific novelty of the study lies in the possibility of using the developed methodological approach to assess differences in the tax sensitivity of individual sectors of the economy for making managerial decisions differentially for each individual sector. As a result of the conducted research, the high tax sensitivity of the extractive industry, manufacturing and construction industries has been revealed. The average level of tax sensitivity is typical for wholesale and retail trade; repair of motor vehicles and motorcycles. Low tax sensitivity was found in financial and insurance activities. Based on the results of the assessment, recommendations are proposed for the introduction of tax instruments into the activities of individual industries and a conclusion is made about the need to specialize tax incentive mechanisms by economic sectors in order to increase economic growth and optimize tax revenues.
About the authors
Anna Evgen'evna Gerasimova
Email: kharitonova.ae@yandex.ru
ORCID iD: 0000-0001-8480-6279
References
Балацкий Е.В., Екимова Н.А. Оценка чувствительности отраслей промышленности России к налоговой нагрузке // Journal of Tax Reform. – 2020. – Т. 6, № 2 – С. 157-179. Прогноз социально-экономического развития Российской Федерации на 2024 год и на плановый период 2025 и 2026 годов. Режим доступа: https://cedipt.gov.spb.ru/media/uploads/userfiles/2023/10/11/Прогноз_2024-2026.pdf Какаулина, М.О. Налоговая нагрузка и экономический рост: поиск эффективной модели // Вестник Томского государственного университета. – 2015. – № 394. – С. 181-188. Папава, В.Г. Лафферов эффект с последействием // Мировая экономика и международные отношения. –2001. – № 7. – С. 34-39. Лоладзе, Г.Г. О некоторых аспектах кривой Лаффера // Макро-, микроэкономика. – 2002. – № 9. – С. 10-25. Балацкий, Е.В. Анализ влияния налоговой нагрузки на экономический рост с помощью производственно-институциональных функций // Проблемы прогнозирования. – 2003. – № 2. – С. 88-107. Балацкий, Е.В. Налогово-бюджетная политика и экономический рост // Общество и экономика. – 2011. – № 4–5. – С. 197-214. Ананиашвили, Ю.Ш., Папава, В.Г. Налоги и макроэкономическое равновесие: лафферо-кейнсианский синтез. Стокгольм: Издательский дом СА&СС Press, 2010. 142 с. Гребешкова, И. А. Тенденции в оценке налоговой нагрузки организаций / И. А. Гребешкова // Вестник Финансового университета. – 2017. – Т. 21, № 3(99). – С. 189-193. Гельбрехт, Д. В. Корреляционно-регрессионный анализ налоговой нагрузки как этап формирования методического инструментария налогового анализа / Д. В. Гельбрехт, М. И. Мигунова, Н. В. Могилевская // Международный научно-исследовательский журнал. – 2021. – № 11-3(113). – С. 151-155. Костина, З.А., Машенцева, Г.А. Прогнозирование налоговых доходов бюджета субъекта российской федерации с использованием корреляционно-регрессионного анализа // Сибирская финансовая школа. –2019. – № 5. – С. 144-147. Официальный сайт СПАРК. Режим доступа: https://spark-interfax.ru/?ysclid=lt1vah8k4c958118007 Nasteski, V. An overview of the supervised machine learning methods // Horizons.B. – 2017. – Volume 4. – P. 51-62. Сравнение классических регрессионных моделей с моделями, построенными с помощью продвинутых методов машинного обучения / А.В. Шатров, Д.Э. Пащенко // Advanced Science. – 2019. – № 1 (12). – С. 24-28. Шахбанов, З. Метод k ближайших соседей: k-NN. Режим доступа: https://shakhbanov.org/knn-metod-k-blizhayshih-sosedey/ Кернога, А.Л., Бурак, Т.И. Сравнение подходов к прогнозированию методом ближайших соседей // Электротехника, информационные технологии, системы управления. – 2015. – № 13 – С. 26-33. Rakhimov, Z. Linear regression with data missing not at random: bootstrap approach / Z. Rakhimov, N. Rahimova // Economic Development and Analysis. – 2024. – Vol. 2, No. 4. – P. 492-502. Moro, A., Maresch, D., Fink, M., Ferrando, A., Claudio, P. Spillover effects of government initiatives fostering entrepreneurship on the access to bank credit for entrepreneurial firms in Europe // Journal of Corporate Finance. – 2020. – Vol. 62. – 101603. Косенкова, Ю. Ю. Роль налоговых инструментов в обеспечении финансирования малого и среднего предпринимательства / Ю.Ю. Косенкова // Вопросы региональной экономики. – 2023. – № 2(55). – С. 151-159. Гурнак, А.В., Назарова, Н.А. Налоговое стимулирование экономического роста в России: проблемы и перспективы // Налоги и налогообложение. – 2023. – № 1. – С. 1-16.
Supplementary files
