Engineering and geocryological assessment of the impact of mineral extraction on permafrost degradation within the Arctic cryolithozone of Russia

Cover Page

Cite item

Full Text

Abstract

The present study focuses on the engineering and geocryological assessment of the thermal impact of mineral extraction activities on the degradation of permafrost within the Arctic cryolithozone of Russia. The research is centered on the Yunyaginsky coal strip mine and adjacent underground mines of the Pechora coal basin, including Vorgashorskaya, Vorkutinskaya, and Zapolyarnaya. These mining facilities are located in regions characterized by widespread permafrost and are subject to increasing anthropogenic pressure from thermal emissions associated with open-pit and underground coal extraction. The study examines how persistent thermal loads from mining infrastructure, spoil heaps, and ventilation emissions contribute to active layer deepening, moisture redistribution, and strength loss in frozen soils. The assessment accounts for the spatial variability of thermal anomalies and their correlation with operational factors, such as excavation intensity, ventilation flow rates, and drainage water temperature. The study uses a combination of field-based temperature monitoring, geotechnical borehole sampling, laboratory testing of permafrost samples, and numerical modeling of heat transfer processes to evaluate the extent and rate of permafrost degradation under thermal stress. The scientific novelty of the research lies in the quantitative characterization of thermal fields generated by mining operations in Arctic permafrost conditions and the identification of threshold conditions under which permafrost degradation accelerates. Numerical simulations and empirical data indicate that under a thermal load density exceeding 100 W/m², permafrost thawing reaches depths of 3–4 meters over five years. Field observations revealed that the maximum depth of seasonal thawing doubled in the impact zone compared to background sites, reaching 2.8 meters. Additionally, localized permafrost loss was documented in areas near spoil heaps and mine water discharge zones, where ground temperatures exceeded 0 °C and moisture content rose above 35%. The findings underscore the necessity for thermoprotective engineering measures, such as insulated platforms, passive thermosiphons, and automated thermal monitoring systems, to mitigate infrastructure risks and ensure sustainable mining operations in Arctic environments.

References

  1. Walter K.M., Chanton J.P., Chapin F.S. III, Schuur E.A.G., Zimov S.A. Methane production and bubble emissions from Arctic lakes: Isotopic implications for source pathways and ages // Journal of Geophysical Research. 2006. Vol. 111, G03003.
  2. Михайлова И.А., Петрова Е.В. Исследование накопленного экологического ущерба от добычи угля на участках Печорского каменноугольного бассейна по данным дистанционного зондирования // Экологический мониторинг и охрана окружающей среды. 2022. № 4. С. 33-40.
  3. Seasonal Increase of Methane Emissions Linked to Warming Permafrost // Nature Climate Change. 2022. URL: https://www.nature.com/articles/s41558-022-01512-4 (дата обращения: 15.05.2025).
  4. Кузьмина О.А., Соловьев А.А. Угольная промышленность и экология: баланс или дисбаланс // Экономика и экология природопользования. 2021. № 3. С. 45-52.
  5. Сидоров В.П., Иванова Н.С. Климатические особенности и статистические оценки изменения элементов климата в районах вечной мерзлоты на территории Севера России // Климат и экология. 2023. № 2. С. 15-22.
  6. Schuur E.A.G., McGuire A.D., Schädel C., et al. Climate change and the permafrost carbon feedback // Nature. 2015. Vol. 520, pp. 171-179. doi: 10.1038/nature14338 EDN: UFRKWZ.
  7. Александров Д.М., Кузнецова Т.И. Экология угольной промышленности: состояние, проблемы, пути решения // Геоэкология. 2020. № 5. С. 60-68.
  8. Петров И.В. Снижение загрязнения окружающей среды отходами обогащения на шахтах Печорского угольного бассейна : дис. ... канд. техн. наук. Москва, 2019. 148 с. EDN: QLYKXI.
  9. Pfeiffer E.-M., Grigoriev M.N., Liebner S., Beer C., Knoblauch C. Methane production as key to the greenhouse gas budget of thawing permafrost // Nature Climate Change. 2018. Vol. 8, pp. 309-312. doi: 10.1038/s41558-018-0095-z EDN: XXLNTN.
  10. Turetsky M.R., Abbott B.W., Jones M.C., Walter Anthony K., Olefeldt D., Schuur E.A.G., Grosse G., Kuhry P., Hugelius G., Lawrence D.M., Gibson C., Sannel A.B.K., McGuire A.D. Carbon release through abrupt permafrost thaw // Nature Geoscience. 2020. Vol. 13, pp. 138-143. doi: 10.1038/s41561-019-0526-0 EDN: ZVQSNT.
  11. Николаев С.А., Орлова Е.М. Современное изменение климата и реакция криолитозоны на примере Западной Сибири и Европейского Севера России // Климатология и география. 2021. № 3. С. 25-32.
  12. Иванов К.В., Соколова М.А. Влияние изменения климата на вечную мерзлоту и инженерную инфраструктуру Крайнего Севера : дис. ... канд. техн. наук. Санкт-Петербург, 2020. 152 с.
  13. Arctic Industrialization: How Will It Impact Delicate Ecosystems? // Earth.com. 2024. URL: https://www.earth.com/news/arctic-industrialization-how-will-it-impact-delicate-ecosystems/ (дата обращения: 15.05.2025).
  14. Walker T.R., Crittenden P.D., Dauvalter V.A., Jones V., Kuhry P., Mikkola K., Nikula A., Patova E., Ponomarev V.I., Pystina T., Rätti O., Solovieva N., Stenina A., Virtanen T., Young S.D. Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia // Ecological Indicators. 2009. Vol. 9, pp. 765-779. doi: 10.1016/j.ecolind.2008.09.008 EDN: LLYBWZ.
  15. Семенов П.И., Козлова Н.В. Влияние загрязняющих веществ, попадающих в почву, на состояние окружающей среды в районах угледобычи // Экологическая безопасность. 2021. № 4. С. 55-62.
  16. Lantuit H., Pollard W.H., Couture N.J., Fritz M., Schirrmeister L., Meyer H., Hubberten H.-W. Coastal erosion driven by climate change and its impact on permafrost degradation in the Arctic // Geophysical Research Letters. 2012. Vol. 39, L22402.
  17. A Transdisciplinary, Comparative Analysis Reveals Key Risks from Permafrost Thaw // Communications Earth & Environment. 2024. URL: https://www.nature.com/articles/s43247-024-01883-w (дата обращения: 15.05.2025).
  18. Морозова Е.С., Лебедев А.Ю. Экономическая оценка последствий деградации вечной мерзлоты под влиянием изменений климата для устойчивости дорожной инфраструктуры в Российской Арктике // Экономика и управление. 2023. № 2. С. 30-38.
  19. Rapidly Increasing Industrial Activities in Arctic // ScienceDaily. 2024. URL: https://www.sciencedaily.com/releases/2024/10/241021170349.htm (дата обращения: 15.05.2025).
  20. Koven C.D., Lawrence D.M., Riley W.J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics // Proceedings of the National Academy of Sciences. 2015. Vol. 112, pp. 3752-3757.
  21. Natali S.M., Schuur E.A.G., Mauritz M., Schade J.D., Celis G., Crummer K.G., Johnston C., Krapek J., Pegoraro E., Salmon V.G., Webb E.E., Wilson C.J. Permafrost thaw and soil moisture driving CO₂ and CH₄ release from upland tundra // Journal of Geophysical Research: Biogeosciences. 2015. Vol. 120, pp. 525-537. doi: 10.1002/2014JG002872 EDN: RQPVXI.
  22. Is Methane Release from the Arctic Unstoppable? // MIT Climate Portal. 2024. URL: https://climate.mit.edu/ask-mit/methane-release-arctic-unstoppable (дата обращения: 15.05.2025).
  23. Zimov S.A., Schuur E.A.G., Chapin F.S. Permafrost and the global carbon budget // Science. 2006. Vol. 312, pp. 1612-1613. doi: 10.1126/science.1128908 EDN: LJZGOT.
  24. Тарасов А.Н., Смирнова Л.П. Развитие угледобычи в Печорском бассейне: потенциал, перспективы, возможности // Горная промышленность. 2022. № 6. С. 40-47.
  25. Schädel C., Bader M.K.-F., Schuur E.A.G., Biasi C., et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils // Nature Climate Change. 2016. Vol. 6, pp. 950-953. doi: 10.1038/nclimate3054 EDN: XTUBUV.
  26. Thawing Permafrost: What Does It Mean? And What Can Be Done? // Salata Institute, Harvard University. 2024. URL: https://salatainstitute.harvard.edu/thawing-permafrost-what-does-it-mean-and-what-can-be-done/ (дата обращения: 15.05.2025).
  27. Trace Metals in Surface Water of the Pechora River and Its Tributaries // Marine Pollution Bulletin. 2023. URL: https://www.sciencedirect.com/science/article/abs/pii/S0025326X23007518 (дата обращения: 15.05.2025).
  28. Thawing Permafrost Releases Industrial Contaminants into Arctic // Environmental Health Perspectives. 2023. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC10971047/ (дата обращения: 15.05.2025).
  29. NASA Helps Find Thawing Permafrost Adds to Near-Term Global Warming // NASA Jet Propulsion Laboratory. 2024. URL: https://www.jpl.nasa.gov/news/nasa-helps-find-thawing-permafrost-adds-to-near-term-global-warming/ (дата обращения: 15.05.2025).
  30. The Arctic Is a Freezer That's Losing Power // WIRED. 2023. URL: https://www.wired.com/story/the-arctic-is-a-freezer-thats-losing-power/ (дата обращения: 15.05.2025).
  31. This Critical Ecosystem Helped Keep Climate Change in Check. Now It's Making Things Worse // Vox. 2024. URL: https://www.vox.com/climate/390530/arctic-tundra-carbon-sink-emitter-climate-change (дата обращения: 15.05.2025).
  32. Arctic Tundra Is Now Emitting More Carbon Than It Absorbs, US Agency Says // The Guardian. 2024. URL: https://www.theguardian.com/world/2024/dec/10/arctic-tundra-carbon-shift (дата обращения: 15.05.2025).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).