Long-term creep of frozen soils in multi-year tests

Cover Page

Cite item

Full Text

Abstract

This study focuses on the long-term creep behavior of frozen saline soils (sand, silty, loam) under constant temperature and mechanical loading conditions. The frozen soil samples were collected in situ from modern marine and alluvial Quaternary deposits on the Yamal Peninsula. Special attention is given to the temporal deformation dynamics under uniaxial compression. The research aims to identify patterns in deformation rate changes, analyze both primary (transient) and secondary (steady-state) creep stages, and compare experimental results with theoretical models of aging, hardening, and flow behavior. Experiments were conducted during 9 years in the underground laboratory of the Amderma Permafrost Station at a depth of 14 meters, which enabled investigation into the long-term mechanical behavior of frozen soils. The findings are of significant importance for predicting the stability of building foundations in permafrost regions and for preventing structural failures. The research method involved prolonged laboratory testing of frozen soil specimens using uniaxial compression under constant temperature and stress conditions. The scientific novelty of this study lies in the unprecedented duration of the experiments (to 9 years), which far exceeds the time frames of most previously conducted creep tests. In most existing studies, the maximum duration of creep testing for frozen soils in various conditions did not exceed several months. For the first time over such an extended time span, it has been shown that sands and silty exhibit a transition from unstable to stable deformation stages, whereas loams demonstrate nonlinear behavior, presumably due to crack formation and internal structural changes. The application of mathematical modeling enabled refinement of deformation prediction parameters, which is of practical significance for engineering calculations. The obtained results enhance the reliability of foundation stability assessments and provide a scientific basis for the design of buildings and infrastructure in permafrost regions.

References

  1. Брушков А.В., Алексеев А.Г., Бадина С.В. и др. Опыт эксплуатации сооружений и необходимость управления тепловым режимом грунтов в криолитозоне // Записки Горного института. 2023. Т. 263. С. 742-756.
  2. Li, X., Cheng, G.D. A GIS-aided response model of high altitude permafrost to global change // Science in China (Series D). 1999. № 42(1). С. 72-79.
  3. Yu, F., Qi, J.L., Yao, X.L., Liu, Y.Z. In-situ monitoring of settlement at different layers under embankments in permafrost regions on the Qinghai-Tibet Plateau // Engineering Geology. 2013. № 160. С. 44-53.
  4. Qi, J., Wen, Z., Zhang, J. Settlement of embankments in permafrost regions in the Qinghai-Tibetan plateau // Norwegian Journal of Geography. 2007. № 61(2). С. 49-55.
  5. Ma, W., Qi, J.L., Wu, Q.B. Analysis of the deformation of embankments on the Qinghai-Tibet railway // Journal of Geotechnical and Geoenvironmental Engineering. 2008. № 134(11). С. 1645-1654.
  6. Bronfenbrener, L., Bronfenbrener, R. Creep characteristics of frozen soils under conditions of small strains // Cold Regions Science and Technology. 2012. № 79. С. 84-91.
  7. Bray, M.T. The influence of cryostructure on the creep behavior of ice-rich permafrost // Cold Regions Science and Technology. 2012. № 79-80. С. 43-52.
  8. Брушков А.В. Засоленные мерзлые породы Арктического побережья, их происхождение и свойства. М.: Изд-во МГУ, 1998. 330 с.
  9. Zhou, X., Guo, L., Li, Z. Multiaxial creep of frozen loess // Mechanics of Materials. 2016. № 95. С. 172-191.
  10. Song, Y., Zhang, Y., Li, C. Creep characteristics and constitutive model for frozen mixed soils // Journal of Mountain Science. 2021. № 18(7). С. 1966-1976.
  11. Цытович Н.А. Механика мерзлых грунтов. Москва: Изд-во МГУ, 1973.
  12. Вялов С.С. Реология мерзлых грунтов // Под редакцией В.Н. Разбегина. Москва: Стройиздат, 2000.
  13. Роман Л.Т., Брушков А.В., Магомедгаджиева A.M. Оценка достоверности определения длительной деформации мерзлых засоленных грунтов // Основания, фундаменты и механика грунтов. 1996. № 2. С. 20-24.
  14. Брушков А.В., Аксёнов В.И. Определение характеристик ползучести засоленных мерзлых грунтов из опытов на одноосное сжатие // Засоленные мерзлые грунты как основания сооружений: Сб. нач. тр. М.: "Наука", 1999. С. 83-90.
  15. Zhang, H., Zhang, J., Zhang, Z., Chen, J., and You, Y. A consolidation model for estimating the settlement of warm permafrost // Computers and Geotechnics. 2016. № 76. С. 43-50.
  16. Liingaard, M., Augustesen, A.H., Lade, P.V. Characterization of models for time-dependent behavior of soils // International Journal of Geomechanics. 2004. № 4(3). С. 157-177.
  17. Chen, J., Yang, X., Li, D. A long-term strength criterion for frozen clay under complex stress states // Cold Regions Science and Technology. 2020. № 176. С. 103089.
  18. Hyndman, R.J., Koehler, A.B. Another look at measures of forecast accuracy // International Journal of Forecasting. 2006. № 22(4). С. 679-688.
  19. Роман Л.Т. Механика мерзлых грунтов. М.: МАЙК "Наука"/Интерпериодика, 2002. 426 с.
  20. Роман Л.Т., Котов П.И. Определение вязкости мерзлых грунтов шариковым штампом // Криосфера Земли. 2013. Т. 17, № 4. С. 30-35.
  21. Benedict, J.B. Frost creep and gelifluction features: A review // Quaternary Research. 1976. № 6. С. 55-76.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).