Cryostructures and stable oxygen and hydrogen isotopes in the Pleistocene sediments discovered by a deep borehole in the Churapcha village (Lena-Aldan interfluve, Russia)

Abstract

The subject of the study is the cryostructures of Pleistocene sediments uncovered by a 30-m borehole in the Churapcha village and the distribution of stable oxygen and hydrogen isotopes in the schlieren ice and thin ice lenses. The research was located in the area of continuous permafrost distribution, the vertical thickness of which reaches 400–500 m here. The average annual temperature of rocks ranges from -4.6 to -6.2 °C, in river valleys the temperatures are increased to about –2 to –1°C. Permafrost sediments in the Churapcha area are characterized by relatively high iciness, from 26 to 47%. Ice is found in deposits as interlayers that form a layered (as well as lenticular and braided) cryostructure. During the fieldwork, frozen cores opened by a drilling hole at a depth of 30 meters were studied. Drilling was carried out using a large-sized drilling rig (PBU-2) based on a Kamaz truck. A core drilling pipe with a diameter of 146 mm was used. Sampling was carried out from the frozen core. The well-uncovered permafrost deposits, which have mainly dark brown and gray colors, especially bluish-gray shades characteristic of heavy loams and clays. The seasonally active layer has a sandy loam composition, and below, at depths from 1.5 to 6.0 m, the deposits are loamy. At depths of 6.0–20.0 m, alternating layers of loams and clays of different thickness are observed, and below there is a sharp change in the lithological composition to medium and fine sand (20.75–24.0 m), including a large number of layers of organic matter. The distribution of δ18O and δ2H values was examined in structured ice up to a depth of 17.7 meters. In the upper 12 m, the isotopic composition is significantly more negative: δ18O values vary from –29.44 to –34.35‰, while δ2H values range from –213.5 to –253.6‰. In the 12-17.7 m range, δ18O oscillates between –25.94 and –28‰, whereas δ2H ranges from –195.3 to –214.3‰. Analysis of data on the isotopic composition of structure ice in the yedoma deposits of Yakutia showed a close range of values with the ice of unit 1 from the borehole in Churapcha that we studied. The heavier isotopic composition of ice of unit 2 is probably explained by another source of water and the influence of isotopic fractionation during the interaction of clay particles with water. As for the contrast of the isotopic characteristics of unit 1 and unit 2, we note that such a ratio, when the isotopic composition in the upper unit is on average consistently 3-5‰ lower than in the lower unit, is quite rare in permafrost. The water for the formation of segregation ice from the borehole could have been formed to a greater extent from melted winter snow and was less subject to evaporation. Contrasting values in the ice of the two studied units may indicate different water sources; for the ice in unit 1, the water source could have been, to a greater extent, winter precipitation (surface water formed from melted snow); the presence of a negative peak in the vertical distribution of isotopic values may indicate two-sided freezing (from above and below) and isotopic fractionation during freezing. The deposits of unit 2 are represented by heavy loams, probably lacustrine. It can be assumed that the saturation of these deposits under these conditions occurred with lake water, which consisted of a mixture of precipitation from both winter and summer seasons and was characterized by higher values of the isotopic composition. Freezing of these loams could have begun already when the lake became shallow. In any case, for now the probable explanation for the heavier isotopic composition of unit 2 is isotopic fractionation in water during interaction with clay particles and a different water source than in unit 1.

References

  1. Железняк М.Н. "em"Геотемпературное поле и криолитозона юго-востока Сибирской платформы."/em" Диссертация на соискание ученой степени доктора геолого-минералогических наук. Якутск: ИМ СО РАН. 2002. 337 с.
  2. Сысолятин Р.Г. "em"Геокриологические условия мезозойских впадин Алданского щита."/em" Диссертация на соискание ученой степени кандидата геолого-минералогических наук. Якутск: ИМ СО РАН. 2023. 185 c.
  3. Атлас Якутской АССР. М.: ГУГК Сов. Мин. СССР, 1981. 40 с.
  4. Ulrich M., Jongejans L.L., Grosse G. et al. Geochemistry and Weathering Indicies of Yedoma and Alas Deposits beneath Thermokarst Lakes in Central Yakutia // "em"Front. Earth Sci."/em", 2021. 9:704141. URL: https://doi.org/10.3389/feart.2021.704141
  5. Башарин Н.И., Егорова Л.С., Васильев Н.А., Фёдоров Н.А., Фёдоров А.Н. Применение беспилотных летательных аппаратов для оценки активизации термокарста // "em"Вестн. СВФУ. Сер. «Науки о Земле»."/em" 2020. №3 (19). С. 36–44. URL: https://doi.org/10.25587/SVFU.2020.19.3.005
  6. Lijima Y., Abe T., Saito H. et al. Thermokarst Landscape Development Detected by Multiple-Geospatial Data in Churapcha, Eastern Siberia // "em"Front. Earth Sci"/em". 2021. 9:750298. URL: https://doi.org/10.3389/feart.2021.750298
  7. "em"Геокриология СССР. Средняя Сибирь"/em" / Под ред. Э.Д. Ершова. М.: Недра, 1989. 414 с.
  8. "em"Мерзлотно-ландшафтная карта Республики Саха (Якутия)"/em". М-б 1:1 500 000 / Федоров А.Н., Торговкин Я.И., Шестакова А.А. и др.; Гл. ред. М.Н. Железняк. Якутск: ИМЗ СО РАН. 2018.
  9. Lijima Y., Park H., Konstantinov P.Ya. et al. Active-Layer Thickness Measurements Using a Handheld Penetrometer at Boreal and Tundra Sites in Eastern Siberia // "em"Permafrost and Periglacial Processes."/em" 2016. 8 p. URL: https://doi.org/10.1002/ppp.1908
  10. Desyatkin R., Filippov N., Desyatkin A. et al. Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes // "em"Front. Earth Sci"/em". 2021. 9:683730. URL: https://doi.org/10.3389/feart.2021.683730
  11. Чжан Т.Р., Иванова Н.А. Мерзлотно-грунтовые условия участка реконструкции автомобильной дороги Чурапча – Арылах // Матер. IX Всеросс. научн.-практ. конф. «Геология и минеральные ресурсы Северо-Востока Россия» (г. Якутск, 10 – 12 апреля 2019 г.). – Якутск: Изд. Дом СВФУ. 2019. Т. 2. 324 с.
  12. Горохов А.Н., Федоров А.Н., Скорве Дж., Макаров В.С. Оценка антропогенной изменчивости ландшафтов окрестностей с. Чурапча (Центральная Якутия) на основе данных дистанционного зондирования Земли // "em"Эволюция и динамика геосистем."/em" 2011. № 4. С. 7–13.
  13. URL: http://www.pogodaiklimat.ru/history/24768_2.htm (дата обращения 17.06.2024)
  14. Десяткин Р.В. "em"Почвообразование в термокарстовых котловинах – аласах криолитозоны"/em" / Автореф. … дис. докт. биол. наук. Улан-Удэ: ИОЭБ СО РАН, 2006. 48 с.
  15. "em" Классификация и диагностика почв СССР"/em" / Егоров В.В., Фридланд В.М., Иванова Е.Н. и др. – М.: Колос, 1977.
  16. "em"Cryosols in Perspective: A View from the Permafrost Heartland. Guidebook-monograph for Field Excursions of the VII Int. Conf. on Cryopedology"/em" / Ed. S.V. Goryachkin, D.E. Konyushkov. Moscow-Yakutsk, 2017. 82 p.
  17. Сивцев Д. Е., Платонов И. А., Торговкин Н. В. Результаты исследования разрушенного булгунняха в Чурапчинском районе (Центральная Якутия): строение и геохимия // "em"Сборник материалов XV всероссийской молодежной научной школы-конференции «Меридиан» Учебный центр НИУ ВШЭ «Вороново» 8–11 ноября 2023 г"/em". М.: Ин-т географии РАН. 2023. С. 210–216.
  18. Спектор В.Б., Спектор В.В., Бакулина Н.Т. Погребенные снежники на Лено-Амгинской равнине // "em"Криосфера Земли"/em". 2011. Том XV. № 4. С. 18–24.
  19. Vasil’chuk Yu. K., Vasilchuk A.C. 2021. Air January paleotemperature reconstruction 48–15 calibrated ka BP using oxygen isotope ratios from Zelyony Mys yedoma // "em"Earth's Cryosphere"/em". 2021. Vol. XXV. N2. P. 44–55. doi: 10.15372/KZ20210205
  20. Vasil’chuk Yu.K ., Vasil’chuk A.C. 2018. Winter Air Paleotemperatures at 30–12 Kyr BP in the Lower Kolyma River, Plakhinskii Yar yedoma: Evidence from Stable Isotopes // "em"Earth's Cryosphere"/em". Vol. XXII. No. 5. P. 3–16. doi: 10.21782/EC2541-9994-2018-5(3-16).
  21. Kotler E., Burn C.R. Cryostratigraphy of the Klondike “muck” deposits, west-central Yukon Territory // "em"Canadian Journal of Earth Sciences"/em". 2000. Vol. 37(6). P. 849–861.
  22. Kotler E. "em"The cryostratigraphic and isotopic characteristics of "muck" deposits, Klondike area, Yukon Territory."/em" A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science. Carleton University. Ottawa, Ontario. 1998. 115 p.
  23. Konishchev V.N., Golubev V.N., Rogov V.V., Sokratov S.A., Tokarev I.V. Experimental study of the isotopic fractionation of water in the process of ice segregation. Earth's Cryosphere. 2014. № 3. С. 3–10.
  24. Михалев Д.В. Изотопно-кислородный анализ текстурообразующих льдов (на примере Колымской низменности и Енисейского Севера). Автореферат диссертации на соискание ученой степени кандидата географических наук. М.: Моск. ун-т. 1990. 24 c.
  25. Michel F.A., Fritz P. Significance of isotope variations in permafrost waters at Illisarvik, N.W.T. // Permafrost. Proceedings of the Fourth Canadian Permafrost Conference. French H.M. (ed.). Calgary: National Research Council of Canada. 1982. P. 173–181.
  26. Сысолятин Р. Г., Калиничева С. В., Литовко А. В., Фёдоров А. Н., Рожина М. С., Сивцев М. А. Колымская мерзлотная трансекта (первые результаты) // Наука и техника в Якутии. 2022. № 2(43). С. 28–32. doi: 10.24412/1728-516Х-2022-2-28-32.
  27. Сысолятин Р.Г., Железняк М.Н. Термический режим криолитозоны Ытымджинской впадины Алданского щита // "em"Криосфера Земли"/em". 2021. Том XXV(6). С. 28–40. doi: 10.15372/KZ20210603.
  28. Сысолятин Р.Г., Железняк М.Н. Геокриологические условия Токариканского и Гувилгринского грабенов (Южная Якутия) // "em"Природные ресурсы Арктики и Субарктики"/em". 2023. Том 28(2). С. 261–274. doi: 10.31242/2618-9712-2023-28-2-261-274.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).