First results of measuring temperature in snow cover at a winter search site in Irkutsk

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the first results of monitoring the temperature in the snow cover, the height of the snow cover and the atmospheric air temperature in Irkutsk. The results were obtained on the basis of exploratory scientific and organizational research that began in 2021 at the INRTU sites using an autonomous automatic software and hardware complex developed at the Institute for Monitoring Climatic and Ecological Systems of the SB RAS. It has been established that there is a change in temperature in the snow cover at the same height during the day, while in the height range from 0 to 15 cm (0 cm is the underlying base) temperature fluctuations between min and max are insignificant compared to temperature fluctuations in the upper layers snow cover. It is shown that graphically changes in temperature in the snow cover at altitudes that are closer to the atmospheric surface of the snow cover have more pronounced amplitude daily cycles, in contrast to changes at low altitudes. A linear correlation has been established between air temperature and temperature at various heights in the snow cover; the correlation coefficient decreases with decreasing heights in the snow cover, provided that the maximum height of the snow cover is constant, for example, during the day. The phenomenon of cooling of the surface of the snow cover at certain hours during the day, when the temperature of the snow-atmospheric surface is lower than the air temperature, is shown. We note that actual values obtained in autonomous automatic real-time mode, such as air temperature, temperature and snow depth, may have practical significance and over time, with the development of digitalization, may be in demand for managing the urban ecosystem of the city and/or individual territories

References

  1. Goncharova O.Y., Matyshak G.V., Epstein H.E., Sefilian А.R., Bobrik А.А. Influence of snow cover on soil temperatures: Meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone) // Catena. 2019. V. 183. Р. 1­–8. https:/doi.org/j.catena.2019.104224.
  2. Наставления гидрометеорологическим станциям и постам. Вып. 3. Ч. I. Метеорологические наблюдения на станциях. – Л. : Гидрометеоиздат, 1985. – 301 c."em""/em"
  3. Калинников В.В., Устинов А.В., Косарев Н.С. Опыт использования метода ГНСС-рефлектометрии для измерения высоты снежного покрова // Вестник СГУГиТ. 2023. Т. 28. № 1. С. 6–13. https:/doi.org/10.33764/2411-1759-2023-28-1-6-13.
  4. Yu X., Wei B., Zhang X., Yu Х. Snow Depth Estimation Based on Multipath Phase Combination of GPS Triple-Frequency Signals // IEEE Transactions on Geoscience and Remote Sensing. 2015. V. 53. № 9. P. 1–10. https:/doi.org/10.1109/TGRS.2015.2417214.
  5. Богородский П.В., Бородкин В.А., Кустов В.Ю., Сумкина А.А. Конвекция воздуха в снежном покрове морского льда // Лёд и Снег. 2020. Т. 60. № 4. С. 557–566. https:/doi.org/10.31857/S2076673420040060.
  6. Kiselev M.V., Voropay N.N., Dyukarev E.A., Kurakov S.A., Kurakova P.S., Makeev E.A. Automatic meteorological measuring systems for microclimate monitoring // China-Mongolia-Russia Economic Corridor: Geographical and Environmental Factor and Territorial Development Opportunities: IOP Conference Series: Earth and Environmental Science. First International Geographical Conference of North Asian Countries. 2018. V. 190. P. 012031. https:/doi.org/10.1088/1755-1315/190/1/012031.
  7. Шеин А.Н., Иванов М.Н., Гинзбург Н.А., Турчанинова А.С., Кураков С.А. Предварительные результаты температурных измерений толщи снежного покрова ледника Иган во время периода абляции 2022 года // Научный вестник Ямало-Ненецкого автономного округа. 2022. № 4. С. 94–107. https:/doi.org/10.26110/ARCTIC.2022.117.4.005.
  8. Чмых Н.В., Бургонутдинов А.М. Определение характеристик снежного покрова для расчета глубины промерзания дорожной конструкции на примере Пермского края // Транспорт. Транспортные сооружения. Экология. 2023. № 1. С. 34–42. https:/doi.org/10.15593/24111678/2023.01.05.
  9. Royer A., Domine F., Roy A., Langlois A., Marchand N., Davesne G. New northern snowpack classification linked to vegetation cover on a latitudinal mega-transect across northeastern Canada // Écoscience. 2021. V. 28. № 3-4. P. 225–242. https:/doi.org/10.1080/11956860.2021.1898775.
  10. Fierz C. Temperature Profile of Snowpack // Encyclopedia of Snow, Ice and Glaciers / eds. V.P. Singh, P. Singh, U.K. Haritashya. – Dordrecht: Springer, 2011. Р. 1151–1154. URL: https:/doi.org/10.1007/978-90-481-2642-2_569.
  11. Пономарев В.В. Термический режим снежного покрова и поверхности почвы в течение зимы на территории государственного природного заповедника «Присурский» // Научные труды государственного природного заповедника «Присурский». 2018. Т. 33. С. 21–31.
  12. Котляков В.М., Сосновский А.В. Оценка термического сопротивления снежного покрова по температуре грунта // Лёд и Снег. 2021. Т. 61. № 2. С. 195–205. URL: https:/doi.org/10.31857/S2076673421020081.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).