Class of Keller-Segel chemotactic systems based on Einstein method of Brownian motion modeling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

We study the movement of the living organism in a band form towards the presence of chemical substrates based on a system of partial differential evolution equations. We incorporate Einstein’s method of Brownian motion to deduce the chemotactic model exhibiting a traveling band. It is the first time that Einstein’s method has been used to motivate equations describing the mutual interaction of the chemotactic system. We have shown that in the presence of limited and unlimited substrate, traveling bands are achievable and it has been explained accordingly. We also study the stability of the constant steady states for the system. The linearized system about a constant steady state is obtained under the mixed Dirichlet and Neumann boundary conditions. We are able to find explicit conditions for linear instability. The linear stability is established with respect to the L2-norm, H1-norm, and L-norm under certain conditions.

Авторлар туралы

R. Islam

Texas Tech University

Хат алмасуға жауапты Автор.
Email: akif.ibraguimov@ttu.edu
Lubbock, USA

A. Ibragimov

Texas Tech University; Institute of Oil and Gas Problems of the RAS

Email: akif.ibraguimov@ttu.edu
Lubbock, USA; Moscow, Russia

Әдебиет тізімі

  1. Adler J. Effect of amino acids and oxygen on chemotaxis in escherichia coli// J. Bacteriology.- 1966.- 92, № 1.- С. 121-129.
  2. Belopolskaya Y.I. Stochastic models of chemotaxis processes// J. Math. Sci. (N.Y.). - 2020.- 251, № 1.- С. 1-14.
  3. Carrillo J.A., Li J., Wang Zh. Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability// Proc. Lond. Math. Soc. (3).- 2021.-122, № 1. -С. 42-68.
  4. Chavanis P.H. A stochastic Keller-Segel model of chemotaxis// Commun. Nonlinear Sci. Numer. Simul. - 2010.-15, № 1.- С. 60-70.
  5. Davis P.N., van Heijster P., Marangell R. Absolute instabilities of travelling wave solutions in a Keller- Segel model// Nonlinearity.- 2017.-30, № 11.-С. 4029-4061.
  6. Einstein A. Uber die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen// Ann. Phys. Leipzig.-1905.- 322.- С. 549-560.
  7. Fu S., Huang G., Adam B. Instability in a generalized multi-species Keller-Segel chemotaxis model// Comput. Math. Appl. -2016.- 72, № 9. -С. 2280-2288.
  8. Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A. Cell-cell communication in food related bacteria// Int. J. Food Microbiology.-2007.-120, № 1-2.-С. 34-45.
  9. Ibragimov A., Peace A. Light driven interactions in spatial predator-prey chemotaxis model in the presence of chemical agent// J. Pure Appl. Math. - 2022.- 2, № 1.- С. 222-244.
  10. Keller E.F., Segel L.A. Traveling bands of chemotactic bacteria: A theoretical analysis// J. Theor. Biol.- 1971.-30, № 2.- С. 235-248.
  11. Li Yi, Li Yong, Wu Y., Zhang H. Spectral stability of bacteria pulses for a Keller-Segel chemotactic model// J. Differ. Equ. - 2021.- 304.-С. 229-286.
  12. Qiao Q. Traveling waves and their spectral instability in volume-filling chemotaxis model// J. Differ. Equ. - 2024.-382.- С. 77-96.
  13. Romanczuk P., Erdmann U., Engel H., Schimansky-Geier L. Beyond the Keller-Segel model: Microscopic modelling of bacterial colonies// Eur. Phys. J. Spec. Topics.-2008.-157.- С. 61-77.
  14. Skorokhod A. Basic principles and applications of probability theory.- Berlin-Heidelberg: Springer, 2005.
  15. Stevens A. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems// SIAM J. Appl. Math.- 2000.- 61, № 1.- С. 183-212.
  16. Stevens A., Othmer H.G. Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks// SIAM J. Appl. Math. -1997.-57, № 4. -С. 1044-1081.
  17. Tindall M., Maini P., Porter S., Armitage J. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations// Bull. Math. Biol.- 2008.- 70, № 6.- С. 1570-607.
  18. Tomasevic M., Talay D. A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case// Bernoulli.-2020.- 26, № 2.-С. 1323-1353.
  19. Wang Q., Yan J., Gai C. Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth// Z. Angew. Math. Phys.- 2016.- 67, № 3.- 51.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».