Хемотаксические системы Келлера-Сегеля, основанные на модели броуновского движения Эйнштейна
- Авторы: Ислам Р.1, Ибрагимов А.1,2
-
Учреждения:
- Техасский технологический университет
- Институт проблем нефти и газа РАН
- Выпуск: Том 70, № 2 (2024): Функциональные пространства. Дифференциальные операторы. Проблемы математического образования
- Страницы: 253-277
- Раздел: Статьи
- URL: https://journals.rcsi.science/2413-3639/article/view/327879
- DOI: https://doi.org/10.22363/2413-3639-2024-70-2-253-277
- EDN: https://elibrary.ru/YJBKWV
- ID: 327879
Цитировать
Полный текст
Аннотация
Изучается движение живого организма ленточной формы в направлении концентрации химических субстратов с помощью системы эволюционных дифференциальных уравнений в частных производных. Используется метод броуновского движения Эйнштейна для вывода хемотаксической модели, демонстрирующей бегущую полосу. Впервые применен метод Эйнштейна для обоснования уравнений, описывающих взаимодействие хемотаксической системы. Показано, что при наличии как ограниченного, так и неограниченного субстрата возможны бегущие полосы, и это соответствующим образом обосновано. Также изучается устойчивость постоянных стационарных состояний системы. Линеаризованная система в окрестности постоянного стационарного состояния получена при смешанных граничных условиях Дирихле и Неймана. Нам удалось найти явные условия линейной неустойчивости. Установлена линейная устойчивость по L2-норме, H1-норме и L∞-норме при определенных условиях.
Ключевые слова
Об авторах
Р. Ислам
Техасский технологический университет
Автор, ответственный за переписку.
Email: akif.ibraguimov@ttu.edu
Лаббок, США
А. Ибрагимов
Техасский технологический университет; Институт проблем нефти и газа РАН
Email: akif.ibraguimov@ttu.edu
Лаббок, США; Москва, Россия
Список литературы
- Adler J. Effect of amino acids and oxygen on chemotaxis in escherichia coli// J. Bacteriology.- 1966.- 92, № 1.- С. 121-129.
- Belopolskaya Y.I. Stochastic models of chemotaxis processes// J. Math. Sci. (N.Y.). - 2020.- 251, № 1.- С. 1-14.
- Carrillo J.A., Li J., Wang Zh. Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability// Proc. Lond. Math. Soc. (3).- 2021.-122, № 1. -С. 42-68.
- Chavanis P.H. A stochastic Keller-Segel model of chemotaxis// Commun. Nonlinear Sci. Numer. Simul. - 2010.-15, № 1.- С. 60-70.
- Davis P.N., van Heijster P., Marangell R. Absolute instabilities of travelling wave solutions in a Keller- Segel model// Nonlinearity.- 2017.-30, № 11.-С. 4029-4061.
- Einstein A. Uber die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen// Ann. Phys. Leipzig.-1905.- 322.- С. 549-560.
- Fu S., Huang G., Adam B. Instability in a generalized multi-species Keller-Segel chemotaxis model// Comput. Math. Appl. -2016.- 72, № 9. -С. 2280-2288.
- Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A. Cell-cell communication in food related bacteria// Int. J. Food Microbiology.-2007.-120, № 1-2.-С. 34-45.
- Ibragimov A., Peace A. Light driven interactions in spatial predator-prey chemotaxis model in the presence of chemical agent// J. Pure Appl. Math. - 2022.- 2, № 1.- С. 222-244.
- Keller E.F., Segel L.A. Traveling bands of chemotactic bacteria: A theoretical analysis// J. Theor. Biol.- 1971.-30, № 2.- С. 235-248.
- Li Yi, Li Yong, Wu Y., Zhang H. Spectral stability of bacteria pulses for a Keller-Segel chemotactic model// J. Differ. Equ. - 2021.- 304.-С. 229-286.
- Qiao Q. Traveling waves and their spectral instability in volume-filling chemotaxis model// J. Differ. Equ. - 2024.-382.- С. 77-96.
- Romanczuk P., Erdmann U., Engel H., Schimansky-Geier L. Beyond the Keller-Segel model: Microscopic modelling of bacterial colonies// Eur. Phys. J. Spec. Topics.-2008.-157.- С. 61-77.
- Skorokhod A. Basic principles and applications of probability theory.- Berlin-Heidelberg: Springer, 2005.
- Stevens A. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems// SIAM J. Appl. Math.- 2000.- 61, № 1.- С. 183-212.
- Stevens A., Othmer H.G. Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks// SIAM J. Appl. Math. -1997.-57, № 4. -С. 1044-1081.
- Tindall M., Maini P., Porter S., Armitage J. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations// Bull. Math. Biol.- 2008.- 70, № 6.- С. 1570-607.
- Tomasevic M., Talay D. A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case// Bernoulli.-2020.- 26, № 2.-С. 1323-1353.
- Wang Q., Yan J., Gai C. Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth// Z. Angew. Math. Phys.- 2016.- 67, № 3.- 51.
Дополнительные файлы
