Multistability for a Mathematical Model of the Dynamics of Predators and Preys in a Heterogeneous Area

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

We consider the system of reaction-diffusion-advection equations describing the evolution of the spatial distributions of two populations of predators and two prey populations. This model allows us to consider directed migration, the Holling functional response of the second kind, and the hyperbolic prey growth function. We obtain conditions on the parameters under which cosymmetries exist. As a result, multistability is realized, i.e., the one- and two-parameter families of stationary solutions appear. For a homogeneous environment, we analytically derive explicit formulas for equilibria. With a heterogeneous habitat, we computed distributions of species using the method of lines and the scheme of staggered grids. We present the results of violation of cosymmetry and transformation of the family in the case of invasion of a predator.

Авторлар туралы

T. Ha

Southern Federal University; Vietnam-Hungary Industrial University

Email: toanhd.viu@gmail.com
Rostov-on-Don, Russia; Hanoi, Vietnam

V. Tsybulin

Southern Federal University

Хат алмасуға жауапты Автор.
Email: vgcibulin@sfedu.ru
Rostov-on-Don, Russia

Әдебиет тізімі

  1. Базыкин А.Д. Нелинейная динамика взаимодействующих популяций. - Ижевск: Ин-т комп. иссл., 2003.
  2. Епифанов А.В., Цибулин В.Г. О динамике косимметричных систем хищников и жертв// Комп. иссл. и модел.- 2017.- 9, № 5.- С. 799-813.
  3. Куракин Л.Г., Юдович В.И. Применение метода Ляпунова-Шмидта в задаче ответвления цикла от семейства равновесий системы с мультикосимметрией// Сиб. мат. ж.- 2000.- 41, № 1.- С. 136-149.
  4. Мюррей Дж. Математическая биология. Т. 1.- М.-Ижевск: Ин-т комп. иссл., 2011.
  5. Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии.-М.: Наука, 1987.
  6. Ха Т.Д., Цибулин В.Г. Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв// Комп. иссл. и модел.- 2020.-12, № 6.- С. 1451-1466.
  7. Ха Т.Д., Цибулин В.Г. Уравнения диффузии-реакции-адвекции для системы хищник-жертва в гетерогенной среде// Комп. иссл. и модел. -2021.- 13, № 6.- С. 1161-1176.
  8. Цибулин В.Г., Ха Т.Д., Зеленчук П.А. Нелинейная динамика системы хищник-жертва на неоднородном ареале и сценарии локального взаимодействия видов// Изв. вузов. Прикл. нелин. динам. - 2021.-29, № 5.- С. 751-764.
  9. Юдович В.И. Косимметрия, вырождение решений операторных уравнений, возникновение фильтрационной конвекции// Мат. заметки.- 1991.- 49, № 5.-С. 142-148.
  10. Юдович В.И. О бифуркациях при возмущениях, нарушающих косимметрию// Докл. РАН. - 2004.- 398, № 1.-С. 57-61.
  11. Bluman G.W., Kumei S. Symmetries and Differential Equations.- Berlin: Springer, 2013.
  12. Budyansky A.V., Frischmuth K., Tsybulin V.G. Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat// Discrete Contin. Dyn. Syst. Ser. B.- 2019.- 24.- С. 547- 561.
  13. Cosner C., Cantrell R. Spatial Ecology Via Reaction-Diffusion Equations.- Chichester: John Wiley & Sons Ltd, 2003.
  14. Feudel U. Complex dynamics in multistable systems// Internat. J. Bifur. Chaos Appl. Sci. Engrg.- 2008.- 18, № 6.- С. 1607-1626.
  15. Frischmuth K., Budyansky A.V., Tsybulin V.G. Modeling of invasion on a heterogeneous habitat: taxis and multistability // Appl. Math. Comput.- 2021.- 410.- 126456.
  16. Frischmuth K., Kovaleva E.S., Tsybulin V.G. Family of equilibria in a population kinetics model and its collapse// Nonlinear Anal. -2011.-12.-С. 146-155.
  17. Holling C.S. Some characteristics of simple types of predation and parasitism // Can. Entomologist.- 1959.-91.-С. 385-398.
  18. Ibragimov N.H. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods.- Singapore: World Scientific, 2010.
  19. Kim K., Choi W. Local dynamics and coexistence of predator-prey model with directional dispersal of predator// Math. Biosci. Eng.- 2020.- 17.-С. 6737-6755.
  20. Rubin A., Riznichenko G. Mathematical Biophysics.- New York: Springer, 2014.
  21. Tyutyunov Y.V., Zagrebneva A.D., Azovsky A.I. Spatiotemporal pattern formation in a prey-predator system: The case study of short-term interactions between diatom microalgae and microcrustaceans// Mathematics.- 2020.- 8, № 7.- С. 1065-1079.
  22. Yudovich V.I. Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it// Chaos.- 1995.- 5, № 2.-С. 402-411.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».