Усреднение параболического уравнения в перфорированной области с односторонним динамическим граничным условием: критический случай
- Авторы: Подольский А.В.1, Шапошникова Т.А.1
-
Учреждения:
- Московский государственный университет им. М. В. Ломоносова
- Выпуск: Том 68, № 4 (2022)
- Страницы: 671-685
- Раздел: Статьи
- URL: https://journals.rcsi.science/2413-3639/article/view/327797
- DOI: https://doi.org/10.22363/2413-3639-2022-68-4-671-685
- ID: 327797
Цитировать
Полный текст
Аннотация
В настоящей работе изучается усреднение параболического уравнения, заданного в области, перфорированной «крошечными» шариками. На границе этих перфораций заданы односторонние динамические граничные ограничения. Мы обращаемся к так называемому «критическому» случаю, который характеризуется связью между коэффициентом в граничном условии, периодом структуры и размером отверстий. В этом случае усредненное уравнение содержит нелокальный «странный» член. Этот член получается как решение вариационной задачи, содержащей обыкновенный дифференциальный оператор.
Об авторах
А. В. Подольский
Московский государственный университет им. М. В. Ломоносова
Автор, ответственный за переписку.
Email: AVPodolskiy@yandex.ru
Москва, Россия
Т. А. Шапошникова
Московский государственный университет им. М. В. Ломоносова
Email: shaposh.tan@mail.ru
Москва, Россия
Список литературы
- Бекмаганбетов К. А., Чепыжов В. В., Чечкин Г. А. Сильная сходимость аттракторов системы реации-диффузии с быстро осциллирующими членами в ортотропной пористой среде// Изв. РАН. Сер. Мат. - 2022. - 86, № 6. - C. 47-78.
- Диаз Ж. И., Гомез-Кастро Д., Подольский А. В., Шапошникова Т. А. Усреднение вариационных неравенств типа Синьорини для p-Лапласиана в перфорированной области для случая p ∈ (1, 2)// Докл. РАН - 2017. - 473, № 4. - C. 395-400.
- Зубова М. Н., Шапошникова Т. А. Об усреднении краевых задач в перфорированных областях с третьим граничным условием и об изменении характера нелинейности задачи в результате усреднения// Дифф. уравн. - 2011. - 47, № 1. - C. 79-91.
- Зубова М. Н., Шапошникова Т. А. Усреднение уравнения диффузии в области, перфорированной вдоль (n - 1)-мерного многообразия с динамическими краевыми условиями на границе перфораций: критический случай// Докл. РАН - 2019. - 99, № 3. - C. 245-251.
- Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. - М.: УРСС, 2010.
- Angulano M. Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media// ArXiv. - 2017. - 1712.01183.
- Arrieta J. M., Quittner P., Rodriguez-Bernal A. Parabolic problems with nonlinear dynamical boundary conditions and singular initial data// Di er. Integral Equ. - 2011. - 14, № 12. - C. 1487-1510.
- Bandle C., von Below J., Reichel W. Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up// Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. - 2006. - 17, № 1. - C. 35-67.
- Bejenaru I., Diaz J. I., Vrabie I. I. An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamical boundary conditions// Electron. J. Di er. Equ. - 2001. - 50. - C. 1-19.
- Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V. Attractors and a «strange term» in homogenized equation// C. R. Mecanique - 2020. - 348, № 5. - C. 351-359.
- Bekmaganbetov K. A., Chechkin G. A., Chepyzov V. V. «Strange term» in homogenization of attractors of reaction-di usion equation in perforated domain// Chaos Solitons Fractals. - 2020. - 140. - 110208.
- Bekmaganbetov K. A., Chechkin G. A., Toleubay A. M. Attractors of 2D Navier-Stokes system of equations in a locally periodic porous medium// Bull. Karaganda Univ. Math. - 2022. - № 3. - C. 35-50.
- Conca C., Murat F., Timofte C. A generalized strange term Signorini’s type problems// ESAIM: Math. Model. Numer. Anal. - 2003. - 3, № 57. - C. 773-805.
- Diaz J. I., Gomez-Castro D., Podolskiy A. V., Shaposhnikova T. A. Homogenization of a net of periodic critically scaled boundary obstacles related to reverse osmosis «nano-composite» membranes// Adv. Nonlinear Anal. - 2018. - 9. - C. 193-227.
- Diaz J. I., Gomez-Castro D., Shaposhnikova T. A., Zubova M. N. A nonlocal memory strange term arising in the critical scale homogenisation of a di usion equation with a dynamic boundary condition// Electron. J. Di er. Equ. - 2019. - 2019. - 77.
- Diaz J. I., Shaposhnikova T. A., Zubova M. N. A strange non-local monotone operator arising in the homogenization of a di usion equation with dynamic nonlinear boundary conditions on particles of critical size and arbitrary shape// Electron. J. Di er. Equ. - 2022. - 2022. - 52.
- Escher J. Quasilinear parabolic systems with dynamical boundary conditions// Commun. Part. Di er. Equ. - 1993. - 18. - C. 1309-1364.
- Gomez D., Lobo M., Shaposhnikova T. A., Zubova M. N. On critical parameters in homogenization for nonlinear uxes in perforated domains by thin tubes and related spectral problems// Math. Methods Appl. Sci. - 2015. - 38, № 12. - C. 2606-2629.
- Gomez D., Perez M. E., Podolskii A. V., Shaposhnikova T. A. Homogenization of variational inequalities for the p-Laplace operator in perforated media along manifolds// Appl. Math. Optim. - 2017. - 475.- C. 1-19.
- Timofte C. Parabolic problems with dynamical boundary conditions in perforated media// Math. Model. Anal. - 2003. - 8. - C. 337-350.
- Wang W., Duan J. Homogenized dynamics of stochastic partial di erential equations with dynamical boundary conditions// Commun. Math. Phys. - 2007. - 275, № 1. - C. 163-186.
Дополнительные файлы
