Volume 70, Nº 1 (2024): Functional spaces. Differential operators. Problems of mathematics education

Articles

On the Boyarsky-Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

Alkhutov Y., Chechkin G.

Resumo

We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):1-14
pages 1-14 views

On discrete models of Boltzmann-type kinetic equations

Bobylev A.

Resumo

The known nonlinear kinetic equations, in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this goal we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables \(F(x,y; v,w)\). The function \(F\) is assumed to satisfy certain simple relations. The main properties of this kinetic equation are studied. It is shown that the above mentioned specific kinetic equations correspond to different polynomial forms of the function \(F\). Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas similar to those used for construction of discrete velocity models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similarly to the Boltzmann \(H\)-function. The theorem of existence, uniqueness and convergence to equilibrium of solutions to the Cauchy problem with any positive initial conditions is formulated and discussed. The differences in long time behaviour between solutions of the wave kinetic equation and solutions of its discrete models are also briefly discussed.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):15-24
pages 15-24 views

The Sylvester problem and uniqueness sets in classes of entire functions

Braichev G.

Resumo

In this paper, we study the problem of finding, by a chosen sequence of complex numbers tending to infinity, the widest possible class of entire functions in a given scale for which this sequence is a uniqueness set. Within the framework of this general problem, we establish uniqueness theorems in various classes of entire functions, distinguished by restrictions on the type and indicator under a refined order. In particular, we complement the previously proven uniqueness theorem, using the concept of the Sylvester circle of the indicator diagram of an entire function of exponential type. We discuss the accuracy of the results obtained and their connection with known facts.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):25-37
pages 25-37 views

The Riemann problem for the main model cases of the Euler-Poisson equations

Gargyants L., Rozanova O., Turzynsky M.

Resumo

In this paper, we construct a solution to the Riemann problem for an inhomogeneous nonstrictly hyperbolic system of two equations, which is a corollary of the Euler-Poisson equations without pressure [9]. These equations can be considered for the cases of attractive and repulsive forces as well as for the cases of zero and nonzero underlying density background. The solution to the Riemann problem for each case is nonstandard and contains a delta-shaped singularity in the density component. In [16], solutions were constructed for the combination corresponding to the cold plasma model (repulsive force and nonzero background density). In this paper, we consider the three remaining cases.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):38-52
pages 38-52 views

Averaging method for problems on quasiclassical asymptotics

Dobrokhotov S., Nazaikinskii V.

Resumo

The averaging method is developed for operators with rapidly oscillating coefficients, intended for use in problems of quasiclassical asymptotics and not assuming a periodic structure of coefficient oscillations. Algebras of locally averaged functions are studied, an averaging theorem for differential operators of general form is proved, and some features of the method are illustrated using the example of the wave equation.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):53-76
pages 53-76 views

On limit cycles of autonomous systems

Ivanova T., Kostin A., Rubinshtein A., Sherstyukov V.

Resumo

We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation \(F(x,y)=1\) with a sufficiently general function \(F\) is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):77-98
pages 77-98 views

Coercive estimates for multilayer degenerate di erential operators

Kazaryan G.

Resumo

We obtain the conditions under which a given multilayer differential operator \(P(D)\) (polynomial \(P(\xi)\)) is more powerful than operator \(Q(D)\) (polynomial \(Q(\xi)\)). This is used to obtain estimates of monomials, which, in turn, using the theory of Fourier multipliers, is used to obtain coercive estimates of derivatives of functions through the differential operator \(P(D)\) applied to these functions.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):99-120
pages 99-120 views

On subordination conditions for systems of minimal di erential operators

Limanskii D., Malamud M.

Resumo

In this paper, we provide a review of results on a priori estimates for systems of minimal differential operators in the scale of spaces \(L^p(\Omega),\) where \(p\in[1,\infty].\) We present results on the characterization of elliptic and \(l\)-quasielliptic systems using a priori estimates in isotropic and anisotropic Sobolev spaces \(W_{p,0}^l(\mathbb R^n),\) \(p\in[1,\infty].\) For a given set \(l=(l_1,\dots,l_n)\in\mathbb N^n\) we prove criteria for the existence of \(l\)-quasielliptic and weakly coercive systems and indicate wide classes of weakly coercive in \(W_{p,0}^l(\mathbb R^n),\) \(p\in[1,\infty],\) nonelliptic, and nonquasielliptic systems. In addition, we describe linear spaces of operators that are subordinate in the \(L^\infty(\mathbb R^n)\)-norm to the tensor product of two elliptic differential polynomials.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):121-149
pages 121-149 views

Lower average estimate for the minimum modulus on circles foran entire function of genus zero

Popov A., Sherstyukov V.

Resumo

The article was written based on the materials of the joint report of the authors, made by them at the Sixth International Conference “Functional spaces. Differential operators. Problems of mathematical education,” dedicated to the centenary of the birth of Corresponding Member of the Russian Academy of Sciences, Academician of the European Academy of Sciences L. D. Kudryavtsev. For an entire function represented by a canonical product of genus zero with positive roots, the following result is proved. For any \(\delta\in(0,1/3]\), the minimum modulus of such a function exceeds on average the maximum of its modulus raised to the power \(-1-\delta,\) on any segment whose end ratio is equal to \(\exp( 2/\delta).\) The main theorem is illustrated by two examples. The first of them shows that instead of the exponent \(-1-\delta\) it is impossible to take \(-1.\) The second example demonstrates the impossibility of replacing the value \(\exp(2/\delta)\) by the value \(28/(15\delta)\) in the theorem for small \(\delta.\)

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):150-162
pages 150-162 views

To geometric aspects of in nite-dimensional dynamical systems

Savchin V.

Resumo

The main goal of the work is to construct analogues of Christoffel symbols for infinitedimensional systems and on this basis to obtain geodesic equations for such systems. These analogies are of particular interest in terms of identifying the relationship between the dynamics of systems with an infinite number of degrees of freedom and Riemannian geometry, as well as geometry defined by the pseudo-Riemannian metric.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):163-172
pages 163-172 views

On recovery of the solution to the Cauchy problem for the singular heat equation

Sitnik S., Polovinkina M., Polovinkin I.

Resumo

We present the results related to the solution of the problem of the best recovery of the solution to the Cauchy problem for the heat equation with the B-elliptic Laplace-Bessel operator in spatial variables from an exactly or approximately known finite set of temperature profiles.

Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2024;70(1):173-187
pages 173-187 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».