Differential Equation in a Banach Space Multiplicatively Perturbed by Random Noise

Capa

Citar

Texto integral

Resumo

We consider the problem of finding the moment functions of the solution of the Cauchy problem for a first-order linear nonhomogeneous differential equation with random coefficients in a Banach space. The problem is reduced to the initial problem for a nonrandom differential equation with ordinary and variational derivatives. We obtain explicit formula for the mathematical expectation and the second-order mixed moment functions for the solution of the equation.

Sobre autores

V Zadorozhniy

Voronezh State University

Email: zador@amm.vsu.ru
1 Universitetskaya sq., 394006 Voronezh, Russia

M Konovalova

Voronezh State University

Email: thereallmariya@gmail.com
1 Universitetskaya sq., 394006 Voronezh, Russia

Bibliografia

  1. Адомиан Дж. Стохастические системы. - М.: Мир, 1987.
  2. Боровков А. А. Теория вероятностей. - М.: Наука, 1986.
  3. Гельфанд И. М., Виленкин Н. Я. Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства. - М.: ФМ, 1961.
  4. Данфорд Н., Шварц Д. Линейные операторы. Т. 1. Общая теория. - М.: ИЛ, 1962.
  5. Задорожний В. Г. Методы вариационного анализа. - М.-Ижевск: РХД, 2006.
  6. Тихонов В. И. Стохастическая радиотехника. - М.: Сов. радио, 1966.
  7. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 2. - М.: ФМ, 1959.
  8. Хилле Э., Филлипс Р. Функциональный анализ и полугруппы. - М.: ИЛ, 1962.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).