Автомодельные решения многофазной задачи Стефана на полупрямой

Обложка

Цитировать

Полный текст

Аннотация

В статье исследуются автомодельные решения многофазной задачи Стефана для уравнения теплопроводности на полупрямой x > 0 с постоянными начальными данными и граничными условиями Дирихле или Неймана. В случае граничного условия Дирихле мы доказываем, что нелинейная алгебраическая система для определения свободных границ является градиентной, а соответствующий потенциал является явно записанной строго выпуклой и коэрцитивной функцией. Следовательно, существует единственная точка минимума потенциала, координаты этой точки определяют свободные границы и дают искомое решение. В случае граничного условия Неймана мы показываем, что задача может иметь решения с различным числом (типом) фазовых переходов. Для каждого фиксированного типа n система для определения свободных границ снова является градиентной, а соответствующий потенциал оказывается строго выпуклым и коэрцитивным, но в некоторой более широкой нефизической области. В частности, решение типа n единственно и может существовать только в том случае, если точка минимума потенциала принадлежит физической области. Мы приводим явный критерий существования решений любого типа n. Из-за довольно сложной структуры множества решений ни существование, ни единственность решения задачи Стефана-Неймана не гарантируются.

Об авторах

Е. Ю. Панов

Санкт-Петербургское отделение Математического института им. В.А. Стеклова РАН

Автор, ответственный за переписку.
Email: evpanov@yandex.ru
Санкт-Петербург, Россия

Список литературы

  1. Каменомостская С.Л. О задаче Стефана// Мат. сб. -1961.-53, № 4.- С. 489-514.
  2. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа.-М.: Наука, 1962.
  3. Панов Е.Ю. О структуре слабых решений задачи Римана для вырождающегося нелинейного уравнения диффузии// Соврем. мат. Фундам. направл.-2023.-69, № 4. -С. 676-684.
  4. Carslaw H.S., Jaeger J.C. Conduction of heat in solids.-Oxford: Oxford University Press, 1959.
  5. Panov E.Yu. Solutions of an ill-posed Stefan problem// J. Math. Sci. (N.Y.) -2023.-274, № 4.- С. 534- 543.
  6. Panov E.Yu. On self-similar solutions of a multi-phase Stefan problem in the half-line// ArXiv.- 2024.- 2404.03672v2 [Math.AP].

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».