Smoothness of generalized solutions to the Dirichlet problem for strongly elliptic functional differential equations with orthotropic contractions on the boundary of adjacent subdomains

Capa

Citar

Texto integral

Resumo

The paper is devoted to the study of the smoothness of generalized solutions of the first boundaryvalue problem for a strongly elliptic functional differential equation containing orthotropic contraction transformations of the arguments of the unknown function in the leading part. The problem is considered in a circle, the coe cients of the equation are constant. Orthotropic contraction is understood as different contraction in different variables. Conditions for the conservation of smoothness on the boundaries of neighboring subdomains formed by the action of the contraction transformation group on a circle are found in explicit form for any right-hand side from the Lebesgue space.

Sobre autores

A. Tasevich

RUDN University; Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Autor responsável pela correspondência
Email: tasevich-al@rudn.ru
Moscow, Russia

Bibliografia

  1. Вишик М. И. О сильно эллиптических системах дифференциальных уравнений// Мат. сб. - 1951. - 29, № 3. - С. 615-676.
  2. Гусева О. В. О краевых задачах для сильно эллиптических систем// Докл. АН СССР. - 1955. - 102, № 6. - С. 1069-1072.
  3. Данфорд Н., Шварц Дж. Т. Линейные операторы. Т. 2. - М.: Мир, 1966.
  4. Иванов Н. О., Скубачевский А. Л. Вторая краевая задача для дифференциально-разностных уравнений// Докл. РАН. - 2021. - 500. - С. 74-77.
  5. Иванов Н. О., Скубачевский А. Л. Об обобщенных решениях второй краевой задачи для дифференциально-разностных уравнений с переменными коэффициентами// Соврем. мат. Фундам. направл. - 2021. - 67, № 3. - С. 576-595.
  6. Иванов Н. О., Скубачевский А. Л. Об обобщенных решениях второй краевой задачи для дифференциально-разностных уравнений с переменными коэффициентами на интервале нецелой длины// Мат. заметки. - 2022. - 111, № 6. - С. 873-886.
  7. Ладыженская О. А. Краевые задачи математической физики. - М.:Наука, 1973.
  8. Михайлов В. П. Дифференциальные уравнения в частных производных. - М.:Наука, 1976.
  9. Неверова Д. А. Гладкость обобщенных решений второй и третьей краевых задач для сильно эллиптических дифференциально-разностных уравнений// Соврем. мат. Фундам. направл. - 2019. - 65, № 4. - С. 655-671.
  10. Неверова Д. А. Гладкость обобщенных решений задачи Неймана для сильно эллиптического дифференциально-разностного уравнения на границе соседних подобластей// Соврем. мат. Фундам. направл. - 2020. - 66, № 2. - С. 272-291.
  11. Россовский Л. Е. Коэрцитивность функционально-дифференциальных уравнений// Мат. заметки. - 1996. - 59, № 1. - С. 103-113.
  12. Россовский Л. Е. К вопросу о коэрцитивности функционально-дифференциальных уравнений// Соврем. мат. Фундам. направл. - 2012. - 45. - С. 122-131.
  13. Россовский Л. Е. Эллиптические функционально-дифференциальные уравнения со сжатием и растяжением аргумертов неизвестной функции// Соврем. мат. Фундам. направл. - 2014. - 54. - С. 3-138.
  14. Россовский Л. Е., Тасевич А. Л. Первая краевая задача для сильно эллиптического функциональнодифференциального уравнения с ортотропными сжатиями// Мат. заметки. - 2015. - 97, № 5. - С. 733-748.
  15. Скубачевский А. Л. Гладкость обобщенных решений первой краевой задачи для эллиптического дифференциально-разностного уравнения// Мат. заметки. - 1983. - 34, № 1. - С. 105-112.
  16. Скубачевский А. Л. Краевые задачи для эллиптических функционально-дифференциальных уравнений и их приложения// Усп. мат. наук. - 2016. - 71, № 5. - С. 3-112.
  17. Скубачевский А. Л., Цветков Е. Л. Вторая краевая задача для эллиптических дифференциальноразностных уравнений// Дифф. уравн. - 1989. - 25, № 10. - С. 1766-1776.
  18. Тасевич А. Л. Гладкость обобщенных решений задачи Дирихле для сильно эллиптических функционально-дифференциальных уравнений с ортотропными сжатиями// Соврем. мат. Фундам. направл. - 2015. - 58. - С. 153-165.
  19. Цветков Е. Л. О гладкости обобщенных решений третьей краевой задачи для эллиптического дифференциально-разностного уравнения// Укр. мат. ж. - 1993. - 45, № 8. - С. 1140-1150.
  20. Шамин Р. В. О пространствах начальных данных для дифференциальных уравнений в гильбертовых пространствах// Мат. сб. - 2003. - 194, № 9. - С. 141-156.
  21. Auscher P., Hofmann S., McIntosh A., Tchamitchian P. The Kato square root problem for higher order elliptic operators and systems on Rn// J. Evol. Equ. - 2001. - 1, № 4. - С. 361-385.
  22. Axelsson A., Keith S., McIntosh A. The Kato square root problem for mixed boundary value problems// J. Lond. Math. Soc. - 2006. - 74. - С. 113-130.
  23. G˚arding L. Dirichlet’s problem for linear elliptic partial differential equations// Math. Scand. - 1953. - 1. - С. 55-72.
  24. Kato T. Fractional powers of dissipative operators// J. Math. Soc. Japan. - 1961. - 13, № 3. - С. 246-274.
  25. Lions J. L. Espaces d’interpolation et domaines de puissance fractionnaires d’operateurs// J. Math. Soc. Japan. - 1962. - 14, № 2. - С. 233-241.
  26. McIntosh A. On the comparability of A1/2 and A∗1/2// Proc. Am. Math. Soc. - 1972. - 32, № 2. - С. 430-434.
  27. Morrey C. B. Multiple integrals in the calculus of variations. - Berlin-Heidelberg-New York: Springer, 1966.
  28. Skubachevskii A. L. The first boundary value problem for strongly elliptic differential-difference equations// J. Differ. Equ. - 1986. - 63. - С. 332-361.
  29. Skubachevskii A. L. Elliptic functional differential equations and applications. - Basel-Boston-Berlin: Birkha¨user, 1997.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».