On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation

Capa

Citar

Texto integral

Resumo

An explicit form of weak solutions to the Riemann problem for a degenerate nonlinear parabolic equation with a piecewise constant diffusion coe cient is found. It is shown that the lines of phase transitions (free boundaries) correspond to the minimum point of some strictly convex and coercive function of a nite number of variables. A similar result is true for Stefan’s problem. In the limit, when the number of phases tends to in nity, there arises a variational formulation of self-similar solutions to the equation with an arbitrary nonnegative diffusion function.

Sobre autores

E. Panov

Yaroslav-the-Wise Novgorod State University; Research and Development Center

Autor responsável pela correspondência
Email: eugeny.panov@novsu.ru
Novgorod the Great, Russia

Bibliografia

  1. Карслоу Г., Егер Дж. Теплопроводность твёрдых тел. - М.: Наука, 1964.
  2. Кружков С. Н. Квазилинейные уравнения первого порядка со многими независимыми переменными// Мат. сб. - 1970. - 81, № 2. - С. 228-255.
  3. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. - М.: Наука, 1967.
  4. Carrillo J. Entropy solutions for nonlinear degenerate problems// Arch. Ration. Mech. Anal. - 1999. - 147. - С. 269-361.
  5. Panov E. Yu. On weak completeness of the set of entropy solutions to a degenerate non-linear parabolic equation// SIAM J. Math. Anal. - 2012. - 44, № 1. - С. 513-535.
  6. Panov E. Yu. Solutions of an ill-posed Stefan problem// J. Math. Sci. (N. Y.) - 2023. - 274, № 4. - С. 534- 543.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).