Том 56, № (2015)

Бүкіл шығарылым

Articles

Tipichnost' fraktal'no-khaoticheskoy struktury integral'nykh voronok v gamil'tonovykh sistemakh s razryvnoy pravoy chast'yu

Zelikin M., Lokutsievskiy L., Khil'debrand R.

Аннотация

В работе рассмотрена линейно-квадратичная задача оптимального управления, в которой управление принимает значения в некотором двумерном треугольнике. Фазовый портрет оптимального синтеза содержит особые экстремали второго порядка, а управление на любой оптимальной траектории имеет счетное число точек разрыва - так называемый чаттеринг-режим. Обнаружен абсолютно новый феномен, а именно, хаотическое поведение оптимальных траекторий на конечных промежутках времени. Оптимальная траектория при любых фиксированных начальных условиях, конечно же, фиксирована; тем не менее, картина оптимального синтеза в целом содержит хаотические структуры канторовского типа, наподобие подковы Смейла, генерируемые гомоклинической точкой. Динамика переключений управления описывается с помощью топологической цепи Маркова. Вычислены оценки размерности множества неблуждающих точек и энтропия. Во второй части работы доказано, что подобное поведение решений типично для кусочно гладких гамильтоновых систем в окрестности специальных особых точек на стыке трех гиперповерхностей разрыва правой части системы.
Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2015;56:5-128
pages 5-128 views

Optimal'nyy sintez v zadache upravleniya n-zvennym perevernutym mayatnikom na dvizhushchemsya osnovanii

Manita L., Ronzhina M.

Аннотация

Рассмотрена задача стабилизации n-звенного перевернутого маятника на движущемся основании (тележке), которое может перемещаться вдоль горизонтальной оси. Управление - сила, приложенная к тележке. Задача состоит в минимизации среднеквадратичного отклонения маятника от вертикальной оси. Для линеаризованной модели доказано, что для малых отклонений от верхнего неустойчивого положенияравновесияоптимальный режим содержит траектории с учащающимисяпе-реключениями. Именно, доказано, что оптимальные траектории с бесконечным числом переключений за конечное время выходят на особую поверхность, а затем продолжают движение с особым управлением по особой поверхности, приближаясь к началу координат за бесконечное время. Показано, что построенные решения глобально оптимальны.
Sovremennaâ matematika. Fundamentalʹnye napravleniâ. 2015;56:129-144
pages 129-144 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».