Asymptotic solutions of the Vlasov-Poisson-Landau kinetic equations
- Autores: Bobylev A.V.1, Potapenko I.F.1
-
Afiliações:
- Keldysh Institute of Applied Mathematics, RAS
- Edição: Volume 71, Nº 1 (2025): Nonlocal and nonlinear problems
- Páginas: 55-70
- Seção: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327839
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-55-70
- EDN: https://elibrary.ru/TRQNDY
- ID: 327839
Citar
Texto integral
Resumo
The paper is devoted to analytical and numerical study of solutions to the Vlasov–Poisson–Landau kinetic equations (VPLE) for distribution functions with typical length L such that \(\varepsilon = r_D/L \ll 1\), where \(r_D\) stands for the Debye radius. It is also assumed that the Knudsen number \({\rm
K\!n} = l/L = O(1)\), where \(l\) denotes the mean free pass of electrons. We use the standard model of plasma of electrons with a spatially homogeneous neutralizing background of infinitely heavy ions. The initial data is always assumed to be close to neutral. We study an asymptotic behavior of the system for small \(\varepsilon > 0\). It is known that the formal limit of VPLE at \(\varepsilon =
0\) does not describe a rapidly oscillating part of the electric field. Our aim is to study the behavior of the “true” electric field near this limit. We consider the problem with standard isotropic in velocities Maxwellian initial conditions, and show that there is almost no damping of these oscillations in the collisionless case. An approximate formula for the electric field is derived and then confirmed numerically by using a simplified Bathnagar–Gross–Krook (BGK-type) model of Vlasov–Poisson–Landau equation (VPLE). Another class of initial conditions that leads to strong oscillations having the amplitude of order \(O(1/\varepsilon)\) is also considered. Numerical solutions of that class are studied for different values of parameters \(\varepsilon\) and \({\rm K\!n}\).
Sobre autores
A. Bobylev
Keldysh Institute of Applied Mathematics, RAS
Autor responsável pela correspondência
Email: alexander.bobylev47@gmail.com
Moscow, Russia
I. Potapenko
Keldysh Institute of Applied Mathematics, RAS
Email: alexander.bobylev47@gmail.com
Moscow, Russia
Bibliografia
- Ландау Л.Д. Кинетическое уравнение в случае кулоновского взаимодействия// Ж. экс. и теор. физ.- 1937.-7.- C. 203-209.
- Batishchev O.V., Bychenkov V.Yu., Detering F., Rozmus W., Sydora R., Capjack C.E., Novikov V.N. Heat transport and electron distribution function in laser produced with hot spots// Phys. Plasmas.- 2002.-9.- C. 2302-2310.
- Bobylev A.V., Potapenko I.F. Long wave asymptotics for Vlasov-Poisson-Landau kinetic equation// J. Stat. Phys. -2019.- 175.-C. 1-18.
- Bobylev A.V., Potapenko I.F. On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data// Kinet. Relat. Models.- 2023.- 16, № 1.-C. 20-40.
- Brantov A.V., Bychenkov V.Yu., Batishchev O.V., Rozmus W. Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses// Comput. Phys. Commun. -2004.- 164.- C. 67-72.
- Bychenkov V.Yu., Rozmus W., Tikhonchuk V.T., Brantov A.V. Nonlocal electron transport in a plasma// Phys. Rev. Lett. - 1995.- 75.- C. 4405-4408.
- Epperlein E.M., Short R.W. A practical nonlocal model for electron heat transport in laser plasmas// Phys. Fluids B.-1991.- 3.-C. 3092-3098.
- Grenier E. Oscillations in quasi-neutral plasma// Commun. Part. Differ. Equ. - 1996.- 21.- C. 363-394.
- Guisset S., Brull S., Dubroca B., d’Humieres E., Karpov S., Potapenko I. Asymptotic-preserving scheme for the M1-Maxwell system in the quasi-neutral regime// Commun. Comput. Phys. -2016.- 19, № 2.- C. 301-328.
- Ichimaru S. Basic Principles of Plasma Physics. -Boca Raton: CRC Press, 1973.
- Landau L.D. Kinetic equation in case of Coulomb interaction// Phys. Zs. Sov. Union. - 1936.- 10.- C. 154-164.
- Lifshitz E.M., Pitaevskii L.P. Physical Kinetics.- London: Pergamon, 1981.
Arquivos suplementares
