On the nonlocal boundary value problem for the elliptic differential equations with integral type Samarskii-Ionkin conditions
- Authors: Ashyralyev A.1,2,3, Hamad A.4
-
Affiliations:
- Bahcesehir University
- RUDN University
- Institute of Mathematics and Mathematical Modeling
- University of Benghazi
- Issue: Vol 71, No 1 (2025): Nonlocal and nonlinear problems
- Pages: 1-17
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327836
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-1-17
- EDN: https://elibrary.ru/SPXFTP
- ID: 327836
Cite item
Full Text
Abstract
The present paper is devoted to the study of the abstract nonlocal boundary value problem with integral type Samarskii–Ionkin conditions for the differential equation of elliptic type \[\hspace{-6em}
-u''(t)+Au(t)=f(t)\quad (0\leq t\leq T),\quad u\left( 0\right)
=\varphi,\quad u'\left( 0\right) =u'\left( T\right)
+\int\limits_{0}^{T}\alpha \left( s\right) u(s)ds+\psi.\quad\] in an arbitrary Banach space \(E\) with the positive operator \(A\). The well-posedness of this problem in various Banach spaces is established. In applications, theorems on the well-posedness of several nonlocal boundary value problems for elliptic equations with integral type Samarskii–Ionkin conditions are proved.
About the authors
Allaberen Ashyralyev
Bahcesehir University; RUDN University; Institute of Mathematics and Mathematical Modeling
Author for correspondence.
Email: allaberen.ashyralyev@eng.bau.edu.tr
Istanbul, Turkiye; Moscow, Russia; Almaty, Kazakhstan
Ayman Hamad
University of Benghazi
Email: ayman.hamad@uob.edu.ly
Elmarj, Libya
References
- Дукенбаева А.А. Об одной обобщенной задаче типа Самарского-Ионкина для уравнения Пуассона в круге// Мат. ж.- 2018.-18, № 1.- C. 78-87.
- Ионкин Н.И. Решение одной краевой задачи теории теплопроводности с неклассическим краевым условием// Дифф. уравн.-1977.- 13, № 2. -C. 294-304.
- Ионкин Н.И. Об устойчивости одной задачи теории теплопроводности с неклассическим краевым условием// Дифф. уравн.-1979.- 15, № 7. -C. 1279-1283.
- Самарский А.А. О некоторых проблемах теории дифференциальных уравнений// Дифф. уравн.- 1980.-16, № 11.-C. 1925-1935.
- СОболевский П.Е. Разностные методы приближенного решения дифференциальных уравнений.- Воронеж: ВГУ, 1975.
- Ashyralyev A. On well-posedness of the nonlocal boundary value problems for elliptic equations// Numer. Funct. Anal. Optim. -2003.- 24, № 1-2.-C. 1-15.
- Ashyralyev A. A note on the Bitsadze-Samarskii type nonlocal boundary value problem in a Banach space// J. Math. Anal. Appl. -2008.- 344, № 1.- C. 557-573.
- Ashyralyev A., Agirseven D., Agarwal R.P. Stability estimates for delay parabolic differential and difference equations// Appl. Comput. Math.- 2020.-19, № 2.- C. 175-204.
- Ashyralyev A., Hamad A. On the well-posedness of elliptic equations with nonlocal boundary conditions// TWMS J. Pure Appl. Math. - 2025.- 16, № 1.
- Ashyralyev A., Ozturk E. On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary value problem// Math. Methods Appl. Sci. - 2013.- 36, № 8.-C. 936-955.
- Ashyralyev A., Sarsanbi A. Well-posedness of a parabolic equation with involution// Numer. Funct. Anal. Optim. -2017.- 38, № 10.-C. 1295-1305.
- Ashyralyev A., Sobolevskii P.E. New Difference Schemes for Partial Differential Equations.- Basel- Boston-Berlin : Birkhauser, 2004.
- Ashyralyev A., Tetikoglu F. FDM for elliptic equations with Bitsadze-Samarskii-Dirichlet conditions// Abst. Appl. Anal. -2012.- 2012.- 454831.
- Ashyralyev A., Tetikoglu F. A note on Bitsadze-Samarskii type nonlocal boundary value problems: wellposedness// Numer. Funct. Anal. Optim.- 2013.-34, № 9.- C. 939-975.
- Ashyralyyev C. Numerical solution to Bitsadze-Samarskii type elliptic overdetermined multipoint NBVP// Bound. Value Probl.- 2017.- 2017.-74.
- Ashyralyyev C. Stability estimates for solution of Neumann-type overdetermined elliptic problem// Numer. Funct. Anal. Optim. -2017.- 38, № 10.- C. 1226-1243.
- Ashyralyyev C., Akkan Y. Numerical solution to inverse elliptic problem with neumann type overdetermination and mixed boundary conditions// Electron. J. Differ. Equ. -2015.- 2015.- 188.
- Avalishvili G., Avalishvili M. Nonclassical problem with integral boundary conditions for elliptic system// Complex Var. Elliptic Equ. -2018.- 63, № 6.-C. 836-853.
- Ciupaila R., Sapagovas M., Stikoniene˙ O.ˇ Numerical solution of nonlinear elliptic equation with nonlocal condition// Nonlinear Anal. Model. Control-2013.-18, № 4.- C. 412-426.
- Gasimova Kh.A. On the Dirichlet problem for a class of non-uniformly elliptic equations with measure data// Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.- 2023.-43, № 4.- C. 72-84.
- Il’in V.A., Kritskov L.V. Properties of spectral expansions corresponding to non-self-adjoint differential operators// J. Math. Sci. (N.Y) -2003.- 116, № 5.- C. 3489-3550.
- Kadirkulov B.J., Kirane M. On solvability of aboundary value problem for the Poisson equation with a nonlocal boundary operator// Acta Math. Sci. -2016.- 35.- C. 970-980.
- Karachik V.V., Turmetov B. Kh. On solvability of some nonlocal boundary value problems for biharmonic equation// Math. Slovaca-2020.-70, № 2. -C. 329-342.
- Kirane M., Torebek B.T. On a nonlocal problem for the Laplace equation in the unit ball with fractional boundary conditions// Math. Methods Appl. Sci. - 2016.- 39.- C. 1121-1128.
- Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems.- Basel-Boston-Berlin: Birkhauser, 1995.
- Pulkina L.S. Nonlocal problems for hyperbolic equations with degenerate integral conditions// Electron. J. Differ. Equ. -2016.-2016.-193.
- Sadybekov M.A., Dukenbayeva A.A. On boundary value problem of the Samarskii-Ionkin type for the Laplace operator in a ball// Kazakh Math. J. -2020.-20, № 1. -C. 84-94.
- Sadybekov M.A., Dukenbayeva A.A. On boundary value problems of the Samarskii-Ionkin type for the Laplace operator in a ball// Int. J. Complex Var. Elliptic Equ. -2022.-67, № 2. -C. 369-383.
- Sadybekov M.A., Dukenbayeva A.A., Yessirkegenov N.A., “On a generalised Samarskii-Ionkin typeproblem for the Poisson equation,” In: Algebra, Complex Analysis, and Pluripotential Theory, Springer, Cham, pp. 207-216.
- Sadybekov M.A., Turmetov B.Kh., Torebek B.T. Solvability of nonlocal boundary-value problems for the Laplace equation in the ball// Electron. J. Differ. Equ. -2014.- 2014.-157.
- Sapagovas M., Griskoniene V., Stikoniene˙ O.ˇ Application of M-matrices theory to numerical investigation of a nonlinear elliptic equation with an integral condition// Nonlinear Anal. Model. Control-2017.- 22, № 4. -C. 489-504.
- Sapagovas M., Stikoniene O., Ciupaila R., Joksiene Z. Convergence of iterative methods for elliptic equations with integral boundary conditions// Electron. J. Differ. Equ. -2016.-2016.-118.
- Shakhmurov V., Musaev H. Nonlocal separable elliptic equations and applications// TWMS J. Pure Appl. Math. -2024.-15, № 2.- C. 257-268.
- Skubachevskii A.L. Elliptic Functional Differential Equations and Applications.- Basel-Boston-Berlin: Birkhauser, 1997.
- Stikoniene O., Sapagovas M., Ciupaila R. On iterative methods for some elliptic equations with nonlocal conditions// Nonlinear Anal. Model. Control- 2014.- 19, № 3.-C. 517-535.
- Triebel H. Interpolation Theory, Function Spaces, Differential Operators.-Amsterdam-New York: NorthHolland, 1978.
- Turmetov B.Kh., Karachik V.V. On solvability of some boundary value problems for a biharmonic equation with periodic conditions// Filomat-2018.-32, № 3.-C. 947-953.
- Turmetov B.Kh. Generalization of the Robin problem for the Laplace equation// Differ. Equ. - 2019.- 55, № 9.- C. 1134-1142.
Supplementary files
