The second four-electron singlet in the Hubbard impurity model

Cover Page

Cite item

Full Text

Abstract

We consider the energy operator of four-electron systems in the Hubbard impurity model and investigate the structure of the essential spectrum and discrete spectra for the second singlet state of the system. It is shown that in the one-dimensional and two-dimensional cases the following situations exist for the essential and discrete spectrum: (a). the essential spectrum of the operator of the second singlet state of four electrons in the Hubbard impurity model consists of a union of eight segments, and the discrete spectrum of the operator consists of six eigenvalues; (b). the essential spectrum of the operator consists of a union of sixteen segments, and the discrete spectrum of the operator consists of fourteen eigenvalues; (c). the essential spectrum of the operator consists of a union of thirteen segments, and the discrete spectrum of the operator consists of nine eigenvalues; (d). the essential spectrum of the operator consists of a union of three segments, and the discrete spectrum of the operator consists of three eigenvalues. In the three-dimensional case the following situations arise: (a). the essential spectrum of an operator consists of unions of eight segments, and the discrete spectrum of the operator consists of six eigenvalues, or the essential spectrum of an operator consists of unions of three segments, and the discrete spectrum of the operator consists of three eigenvalues; (b). the essential spectrum of an operator consists of unions of eight segments, and the discrete spectrum of the operator consists of six eigenvalues; (c). the essential spectrum of an operator consists of unions of sixteen segments, and the discrete spectrum of the operator consists of fourteen eigenvalues; (d). the essential spectrum of an operator consists of unions of three segments, and the discrete spectrum of the operator consists of three eigenvalues.

About the authors

S. M. Tashpulatov

Institute of Nuclear Physics of the Uzbekistanian Academy of Sciences

Email: sadullatashpulatov@yandex.com
Tashkent, Uzbekistan

R. T. Parmanova

Institute of Nuclear Physics of the Uzbekistanian Academy of Sciences

Email: parmanova.r@inp.uz
Tashkent, Uzbekistan

References

  1. Изюмов Ю. А., Чащин Н. И., Алексеев Д. С. Теория сильно коррелированных систем. Метод производящего функционала. - М.-Ижевск: Инст. комп. исслед., 2006.
  2. Ташпулатов С. М. Спектр оператора энергии в трехэлектронных системах с примесью в модели Хаббарда.Второе дублетное состояние// Соврем. мат. Фундам. направл. - 2019. - 65, № 3. - С. 109- 123. - doi: 10.22363/2413-3639-2019-65-1-109-123.
  3. Anderson P. W. Localized Magnetic States in Metals// Phys. Rev. - 1961. - 124. - C. 41-53.
  4. Arovas D. P., Berg E., Kivelson S. A., Raghy S. The Hubbard model// Annu. Rev. Condens. Matt. Phys. - 2022. - 13. - C. 239-274. - doi: 10.1146/annurev-conmatphys-031620-102024.
  5. Gutzwiller M. C. Effect of correlation on the ferromagnetism of transition metals// Phys. Rev. Lett. - 1963. - 10. - C. 159-162.
  6. Hubbard J. Electron correlations in narrow energy bands// Proc. Roy. Soc. A - 1963. - 276. - C. 238-257.
  7. Ichinose T. Spectral properties of tensor products of linear operators, 1// Trans. Am. Math. Soc. - 1978. - 235. - C. 75-113.
  8. Ichinose T. Spectral properties of tensor products of linear operators, 2: The approximate point spectrum and Kato essential spectrum// Trans. Am. Math. Soc. - 1978. - 237. - C. 223-254.
  9. Izyumov U. A. Hubbard model of strong correlations// Phys.-Uspekhi - 1995. - 38, No. 4. - C. 385-408. - doi: 10.1070/PU1995v038n04ABEH000081.
  10. Kanamori J. Electron correlation and ferromagnetism of transition metals// Prog. Theor. Phys. - 1963. - 30. - C. 275-289.
  11. Karpenko B. V., Dyakin V. V., Budrina G. L. Two electrons in the Hubbard Model// Phys. Met. Metallogr. - 1986. - 61. - C. 702-706.
  12. Moskalenko V. A., Dohotaru L. A., Digor D. F., Cebotari I. D. Diagram theory for the two fold degenerate Anderson impurity model// Theor. Math. Phys. - 2014. - 178. - C. 115-129. - doi: 10.1007/s11232-0140133-6.
  13. Ovchinnikov S. G., Shneider E. I. Spectral functions in the Hubbard model with half-filling// Phys. Solid State - 2004. - 46. - C. 1469-1473. doi: 10.1134/1.1788780
  14. O¨z Ya., Klumper A. A Hubbard model with integrable impurity// J. Phys. A. Math. Theor. - 2019. - 52, No. 32. - 325001. - doi: 10.1088/1751-8121/ab2cf4.
  15. Rammelmuller L., Huber D. и др. Magnetic impurity in a one-dimensional fewfermion system// SciPost Phys. - 2023. - 14, No. 1. - 006. - doi: 10.21468/SciPostPhys.14.1.006.
  16. Reed M., Simon B. Methods of Modern Mathetical Physics. 1. Functional Analysis. - New York: Acad. Press, 1972.
  17. Reed M., Simon B. Methods of Modern Mathetical Physics. 4. Operator Analysis. - New York: Acad. Press, 1978.
  18. Shubin S. P., Wonsowsky S. V. On the electron theory of metals// Proc. Roy. Soc. A - 1934. - 145.- C. 159-180.
  19. Tashpulatov S. M. Spectral properties of three-electron systems in the Hubbard Model// Theor. Math. Phys. - 2014. - 179, No. 5. - C. 712-728.
  20. Tashpulatov S. M. Spectra of the energy operator of four-electron systems in the triplet state in the Hubbard Model// J. Phys. Conf. Ser. - 2016. - 697. - 012025. - doi: 10.1088/1742-6596/697/1/012025.
  21. Tashpulatov S. M. The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state// Lobachevskii J. Math. - 2017. - 38, No. 3. - C. 530-541.
  22. Tashpulatov S. M. The structure of essential spectra and discrete spectrum of three-electron systems in the impurity Hubbard model. quartet state// J. Appl. Math. Phys. - 2021. - 9. - C. 1391-1421.
  23. Tashpulatov S. M. Spectra of the energy operator of two-electron system in the impurity Hubbard model// J. Appl. Math. Phys. - 2022. - 10. - C. 2743-2779.
  24. Tashpulatov S. M. Spectra of the Two-Electron System in the Impurity Hubbard Model. - Lambert Academic Publishing, 2022.
  25. Val’kov V. V., Ovchinnikov S. G., Petrakovskii O. P. The excitation spectra of two-magnon systems in easy-axis quasidimensional ferromagnets// Sov. Phys. Solid State - 1988. - 30. - C. 3044-3047.
  26. Zvyagin A. A., Schlottmann P. Magnetic impurity in the one-dimensional Hubbard model// Phys. Rev. B - 1997. - 56. - C. 300-306. - doi: 10.1103/PhysRevB.56.300.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».