Dissipation-induced instabilities in magnetized ows
- Authors: Kirillov O.N.1
-
Affiliations:
- Helmholtz-Zentrum Dresden Rossendorf
- Issue: Vol 60, No (2016)
- Pages: 82-101
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/347286
- ID: 347286
Cite item
Full Text
Abstract
About the authors
O. N. Kirillov
Helmholtz-Zentrum Dresden Rossendorf
Email: o.kirillov@hzdr.de
Dresden, Germany
References
- Арнольд В. И. О матрицах, зависящих от параметра// Усп. мат. наук. - 1971. - 26, № 2. - С. 101-114.
- Balbus S. A., Hawley J. F. A powerful local shear instability in weakly magnetized disks 1. Linear analysis// Astrophys. J. - 1991. - 376. - С. 214-222.
- Balbus S. A., Hawley J. F. A powerful local shear instability in weakly magnetized disks 4. Nonaxisymmetric perturbations// Astrophys. J. - 1992. - 400. - С. 214-222.
- Beletsky V. V., Levin E. M. Stability of a ring of connected satellites// Acta Astron. - 1985. - 12.- С. 765-769.
- Bilharz H. Bemerkung zu einem Satze von Hurwitz// Z. Angew. Math. Mech. - 1944. - 24. - С. 77-82.
- Bloch A. M., Krishnaprasad P. S., Marsden J. E., Ratiu T. S. Dissipation-induced instabilities// Ann. Inst. H. Poincare´ Anal. Non Line´aire - 1994. - 11.- С. 37-90.
- Bogoyavlenskij O. I. Unsteady equipartition MHD solutions//j. Math. Phys. - 2004. - 45. - С. 381-390.
- Boldyrev S., Huynh D., Pariev V. Analog of astrophysical magnetorotational instability in a Couette-Taylor ow of polymer uids// Phys. Rev. E. - 2009. - 80. - 066310.
- Bolotin V. V. Nonconservative problems of the theory of elastic stability. - Oxford-London-New York- Paris: Pergamon Press, 1963.
- Bottema O. The Routh-Hurwitz condition for the biquadratic equation// Indag. Math. - 1956. - 18.- С. 403-406.
- Bridges T. J., Dias F. Enhancement of the Benjamin-Feir instability with dissipation// Phys. Fluids. - 2007. - 19. - 104104.
- Chandrasekhar S. On the stability of the simplest solution of the equations of hydromagnetics// Proc. Natl. Acad. Sci. USA. - 1956. - 42. - С. 273-276.
- Chandrasekhar S. The stability of nondissipative Couette ow in hydromagnetics// Proc. Natl. Acad. Sci. USA. - 1960. - 46. - С. 253-257.
- Chandrasekhar S. Hydrodynamic and hydromagnetic stability. - Oxford: Oxford University Press, 1961.
- Chandrasekhar S. A scienti c autobiography: S. Chandrasekhar. - Singapore: World Scienti c, 2010.
- Dobrokhotov S., Shafarevich A. Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in R3, linearized on a smooth ow// Math. Notes. - 1992. - 51. - С. 47-54.
- Ebrahimi F., Lefebvre B., Forest C. B., Bhattacharjee A. Global Hall-MHD simulations of magnetorotational instability in the plasma Couette ow experiment// Phys. Plasmas. - 2011. - 18. - 062904.
- Eckhardt B., Yao D. Local stability analysis along Lagrangian paths// Chaos Solitons Fractals. - 1995. - 5, №11. - С. 2073-2088.
- Eckho K. S. On stability for symmetric hyperbolic systems, I//j. Di erential Equations. - 1981. - 40.- С. 94-115.
- Eckho K. S. Linear waves and stability in ideal magnetohydrodynamics// Phys. Fluids. - 1987. - 30.- С. 3673-3685.
- Friedlander S., Vishik M. M. On stability and instability criteria for magnetohydrodynamics// Chaos. - 1995. - 5. - С. 416-423.
- Golovin S. V., Krutikov M. K.Complete classi cation of stationary ows with constant total pressure of ideal incompressible in nitely conducting uid//j. Phys. A. - 2012. - 45. - 235501.
- Ji H., Balbus S. Angular momentum transport in astrophysics and in the lab// Phys. Today. - 2013. - August 2013. - С. 27-33.
- Kapitsa P. L. Stability and passage through the critical speed of the fast spinning rotors in the presence of damping// Z. Tech. Phys. - 1939. - 9. - С. 124-147.
- Kirillov O. N. Campbell diagrams of weakly anisotropic exible rotors// Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. - 2009. - 465. - С. 2703-2723.
- Kirillov O. N. Stabilizing and destabilizing perturbations of PT-symmetric inde nitely damped systems// Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. - 2013. - 371. - 20120051.
- Kirillov O. N. Nonconservative stability problems of modern physics. - Berlin-Boston: De Gruyter, 2013.
- Kirillov O. N., Seyranian A. P. Metamorphoses of characteristic curves in circulatory systems//j. Appl. Math. Mech. - 2002. - 66, №3. - С. 371-385.
- Kirillov O. N., Stefani F. On the relation of standard and helical magnetorotational instability// Astrophys. J. - 2010. - 712.- С. 52-68.
- Kirillov O. N., Stefani F. Standard and helical magnetorotational instability: How singularities create paradoxal phenomena in MHD// Acta Appl. Math. - 2012. - 120. - С. 177-198.
- Kirillov O. N., Stefani F. Extending the range of the inductionless magnetorotational instability// Phys. Rev. Lett. - 2013. - 111. - 061103.
- Kirillov O. N., Stefani F., Fukumoto Y. A unifying picture of helical and azimuthal MRI, and the universal signi cance of the Liu limit// Astrophys. J. - 2012. - 756.- С. 83.
- Kirillov O. N., Stefani F., Fukumoto Y. Instabilities of rotational ows in azimuthal magnetic elds of arbitrary radial dependence// Fluid Dyn. Res. - 2014. - 46. - 031403.
- Kirillov O. N., Stefani F., Fukumoto Y. Local instabilities in magnetized rotational ows: A shortwavelength approach//j. Fluid Mech. - 2014. - 760. - С. 591-633.
- Kirillov O. N., Verhulst F. Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?// Z. Angew. Math. Mech. - 2010. - 90, №6. - С. 462-488.
- Krechetnikov R., Marsden J. E. Dissipation-induced instabilities in nite dimensions// Rev. Modern Phys. - 2007. - 79, №2. - С. 519-553.
- Krueger E. R., Gross A., Di Prima R. C. On relative importance of Taylor-vortex and nonaxisymmetric modes in ow between rotating cylinders//j. Fluid Mech. - 1966. - 24, №3. - С. 521-538.
- Kucherenko V. V., Kryvko A.Interaction of Alfv´en waves in the linearized system of magnetohydrodynamics for an incompressible ideal uid// Russ. J. Math. Phys. - 2013. - 20, №1. - С. 56-67.
- Landman M. J., Sa man P. G. The three-dimensional instability of strained vortices in a viscous uid// Phys. Fluids. - 1987. - 30. - С. 2339-2342.
- Langford W. F. Hopf meets Hamilton under Whitney’s umbrella// Solid Mech. Appl. - 2003. - 110.- С. 157-165.
- Latter H. N., Rein H., Ogilvie G. I. The gravitational instability of a stream of coorbital particles// Mon. Not. R. Astron. Soc. - 2012. - 423. - С. 1267-1276.
- Liu W., Goodman J., Herron I., Ji H. Helical magnetorotational instability in magnetized Taylor-Couette ow// Phys. Rev. E. - 2006. - 74, №1. - 056302.
- MacKay R. S. Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation// Phys. Lett. A. - 1991. - 155. - С. 266-268.
- Maddocks J. H., Overton M. L. Stability theory for dissipatively perturbed Hamiltonian systems// Comm. Pure Appl. Math. - 1995. - 48. - С. 583-610.
- Michael D. H. The stability of an incompressible electrically conducting uid rotating about an axis when current ows parallel to the axis// Mathematika. - 1954. - 1. - С. 5-50.
- Montgomery D. Hartmann, Lundquist, and Reynolds: The role of dimensionless numbers in nonlinear magneto uid behavior// Plasma Phys. Control. Fusion. - 1993. - 35. - С. B105-B113.
- Ogilvie G. I., Pringle J. E. The nonaxisymmetric instability of a cylindrical shear ow containing an azimuthal magnetic eld// Mon. Not. R. Astron. Soc. - 1996. - 279. - С. 152-164.
- Ogilvie G. I., Potter A. T. Magnetorotational-type instability in Couette-Taylor ow of a viscoelastic polymer liquid// Phys. Rev. Lett. - 2008. - 100. - 074503.
- Ogilvie G. I., Proctor M. R. E. On the relation between viscoelastic and magnetohydrodynamic ows and their instabilities//j. Fluid Mech. - 2003. - 476. - С. 389-409.
- Rayleigh J. W. S. On the dynamics of revolving uids// Proc. R. Soc. Lond. A. - 1917. - 93. - С. 148-154.
- Ru¨ diger G., Gellert M., Schultz M., Hollerbach R. Dissipative Taylor-Couette ows under the in uence of helical magnetic elds// Phys. Rev. E. - 2010. - 82. - 016319.
- Ru¨ diger G., Gellert M., Schultz M., Hollerbach R., Stefani F. The azimuthal magnetorotational instability (AMRI)// Mon. Not. R. Astron. Soc. - 2014. - 438. - С. 271-277.
- Ru¨ diger G., Kitchatinov L., Hollerbach R. Magnetic processes in astrophysics. - New York: Wiley-VCH, 2013.
- Seilmayer M., Galindo V., Gerbeth G., Gundrum T., Stefani F., Gellert M., Ru¨ diger G., Schultz M., Hollerbach R. Experimental evidence for nonaxisymmetric magnetorotational instability in an azimuthal magnetic eld// Phys. Rev. Lett. - 2014. - 113. - 024505.
- Smith D. M. The motion of a rotor carried by a exible shaft in exible bearings// Proc. R. Soc. Lond. A. - 1933. - 142. - С. 92-118.
- Squire J., Bhattacharjee A. Nonmodal growth of the magnetorotational instability// Phys. Rev. Lett. - 2014. - 113. - 025006.
- Stefani F., Gailitis A., Gerbeth G. Magnetohydrodynamic experiments on cosmic magnetic elds// Z. Angew. Math. Mech. - 2008. - 88. - С. 930-954.
- Swaters G. E. Modal interpretation for the Ekman destabilization of inviscidly stable baroclinic ow in the Phillips model//j. Phys. Oceanogr. - 2010. - 40. - С. 830-839.
- Thorpe S. A., Smyth W. D., Li L. The e ect of small viscosity and di usivity on the marginal stability of stably strati ed shear ows//j. Fluid Mech. - 2013. - 731. - С. 461-476.
- Velikhov E. P. Stability of an ideally conducting liquid owing between cylinders rotating in a magnetic eld// Sov. Phys. JETP-USSR - 1959. - 9. - С. 995-998.
- Vishik M., Friedlander S. Asymptotic methods for magnetohydrodynamic instability// Quart. Appl. Math. - 1998. - 56. - С. 377-398.
- Yakubovich V. A., Starzhinskii V. M. Linear di erential equations with periodic coe cients. - New York: Wiley, 1975.
- Ziegler H. Die Stabilita¨tskriterien der Elastomechanik// Ing.-Arch. - 1952. - 20. - С. 49-56.
- Zou R., Fukumoto Y. Local stability analysis of the azimuthal magnetorotational instability of ideal MHD ows// Prog. Theor. Exp. Phys. - 2014. - 113J01.
Supplementary files
