A Real-Time Iterative Projection Scheme for Solving the Common Fixed Point Problem and Its Applications
- Autores: Gibali A1, Teller D1
-
Afiliações:
- Ort Braude College
- Edição: Volume 64, Nº 4 (2018): Contemporary Problems in Mathematics and Physics
- Páginas: 616-636
- Seção: New Results
- URL: https://journals.rcsi.science/2413-3639/article/view/347241
- DOI: https://doi.org/10.22363/2413-3639-2018-64-4-616-636
- ID: 347241
Citar
Texto integral
Resumo
Sobre autores
A Gibali
Ort Braude College
Email: avivg@braude.ac.il
D Teller
Ort Braude College
Email: ktui619@gmail.com
Bibliografia
- Губин Л. Г., Поляк Б. Т., Райк Е. В. Метод проекции для нахождения общей точки выпуклых множеств// Журн. выч. мат. и мат. физ. - 1967. - 7.- C. 1-24.
- Aharoni R., Censor Y. Block-iterative projection methods for parallel computation of solutions to convex feasibility problems// Linear Algebra Appl. - 1989. - 120. - C. 165-175.
- Baillon J.-B., Bruck R. E., Reich S. On the asymptotic behavior of nonexpansive mappings and semigroups in banach spaces// Houston J. Math. - 1978. - 4. - C. 1-9.
- Bauschke H. H., Borwein J. On projection algorithms for solving convex feasibility problems// SIAM Rev. - 1996. - 38. - C. 367-426.
- Bauschke H. H., Combettes P. L. Convex analysis and monotone operator theory in Hilbert spaces. - Berlin: Springer, 2011.
- Bauschke H. H., Koch V. R. Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces// В сб.: «Infinite Products of Operators and Their Applications. A Research Workshop of the Israel Science Foundation, Haifa, Israel, May 21-24, 2012». - Providence: Am. Math. Soc., 2015. - С. 1-40.
- Borwein J. M., Tam М. K. A cyclic Douglas-Rachford iteration scheme// J. Optim. Theory Appl. - 2014. - 160.- C. 1-29.
- Browder F. E. Fixed point theorems for noncompact mappings in Hilbert space// Proc. Natl. Acad. Sci. USA. - 1965. - 53. - C. 1272-1276.
- Byrne C. L. A unified treatment of some iterative algorithms in signal processing and image reconstruction// Inverse Problems. - 1999. - 20. - C. 1295-1313.
- Byrne C. L. Applied iterative methods. - Wellsely: AK Peters, 2008.
- Cegielski A. Iterative methods for fixed point problems in Hilbert spaces. - Berlin-Heidelberg: Springer, 2012.
- Cegielski A., Reich S., Zalas R. Regular sequences of quasi-nonexpansive operators and their applications// SIAM J. Optim. - 2018. - 28. - C. 1508-1532.
- Cegielski A., Zalas R. Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators// Numer. Funct. Anal. Optim. - 2013. - 34. - C. 255-283.
- Cegielski A., Zalas R. Properties of a class of approximately shrinking operators and their applications// Fixed Point Theory. - 2014. - 15. - C. 399-426.
- Censor Y., Chen W., Combettes P. L., Davidi R., Herman G. T. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints// Comput. Optim. Appl. - 2012. - 51.- C. 1065-1088.
- Censor Y., Elfving T., Herman G. T. Averaging strings of sequential iterations for convex feasibility problems// В сб.: «Infinite Products of Operators and Their Applications. A Research Workshop of the Israel Science Foundation, Haifa, Israel, March 13-16, 2000». - Amsterdam: North-Holland, 2001. - С. 101-113.
- Censor Y., Zenios S. A. Parallel optimization: theory, algorithms, and applications. - New York: Oxford Univ. Press, 1997.
- Cimmino G. Calcolo approssiomatto per le soluzioni dei sistemi di equazioni lineari// La Ricerca Sci. XVI. Ser. II. - 1938. - 1. - C. 326-333.
- Combettes P. L. Quasi-Feje´rian analysis of some optimization algorithms// В сб.: «Infinite Products of Operators and Their Applications. A Research Workshop of the Israel Science Foundation, Haifa, Israel, March 13-16, 2000». - Amsterdam: North-Holland, 2001. - С. 115-152.
- Das I., Potra F. A. Subsequent convergence of iterative methods with applications to real-time modelpredictive control// J. Optim. Theory Appl. - 2003. - 119. - C. 37-47.
- Diehl M. Real-Time optimization for large scale nonlinear processes. - Heidelberg: Univ. Heidelberg, 2001.
- Escalante R., Raydan M. Alternating projection methods. - Philadelphia: SIAM, 2011.
- Gala´ ntai A. Projectors and projection methods. - Boston-Dordrecht-London: Kluwer Academic Publ., 2004.
- Goebel K., Reich S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings. - New York- Basel: Marcel Dekker, 1984.
- Gordon D., Gordon R. Component-averaged row projections: A robust block-parallel scheme for sparse linear systems// SIAM J. Sci. Comput. - 2005. - 27. - C. 1092-1117.
- Gordon R., Bender R., Herman G. T. Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and X-ray photography// Bull. Am. Math. Soc. - 1970. - 29. - C. 471-481.
- Hansen P. C., Saxild-Hansen M. AIR Tools - a MATLAB package of algebraic iterative reconstruction methods// J. Comput. Appl. Math. - 2012. - 236, № 8. - C. 2167-2178.
- Iusem A., Jofre´ A., Thompson P. Incremental constraint projection methods for monotone stochastic variational inequalities// arXiv:1703.00272v2. - 2017.
- Kaczmarz S. Angena¨herte auflo¨sung von systemen linearer gleichungen// Bull. Int. l’Acad. Polon. Sci. Lett. A. - 1937. - 35. - C. 355-357.
- Karp R. M. On-line algorithms versus off-line algorithms: How much is it worth to know the future?// В сб.: «Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software, Architecture, Information Processing ’92». - 1992. - 1. - С. 416-429.
- Leventhal L., Lewis A. S. Randomized methods for linear constraints: convergence rates and conditioning// Math. Oper. Res. - 2010. - 35. - C. 641-654.
- Ma˘ rus¸ter S¸ t., Popirlan C. On the Mann-type iteration and the convex feasibility problem// J. Comput. Appl. Math. - 2008. - 212. - C. 390-396.
- Needell D. Randomized Kaczmarz solver for noisy linear systems// BIT Numer. Math. - 2010. - 50.- C. 395-403.
- Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings// Bull. Am. Math. Soc. - 1967. - 73. - C. 591-597.
- Ordon˜ ez C. E., Karonis N., Duffin K., Coutrakon G., Schulte R., Johnson R., Pankuch M. A real-time image reconstruction system for particle treatment planning using proton computed tomography (PCT)// Phys. Proc. - 2017. - 90. - C. 193-199.
- Penfold S., Censor Y., Schulte R. W., Bashkirov V., McAllister S., Schubert K. E., Rosenfeld A. B. Blockiterative and string-averaging projection algorithms in proton computed tomography image reconstruction// В сб.: «Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems». - Madison: Medical Phys. Publ., 2010. - С. 347-368.
- Reich S., Zalas R. A modular string averaging procedure for solving the common fixed point problem for quasi-nonexpansive mappings in hilbert space// Numer. Algorithms. - 2016. - 72. - C. 297-323.
Arquivos suplementares

