Generalized Keller-Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations

封面

如何引用文章

全文:

详细

We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller-Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.

作者简介

I Capuzzo Dolcetta

Sapienza Universita` di Roma

Email: capuzzo@mat.uniroma1.it
Rome, Italy

F Leoni

Sapienza Universita` di Roma

Email: leoni@mat.uniroma1.it
Rome, Italy

A Vitolo

Universita` di Salerno

Email: vitolo@unisa.it
Fisciano, Italy

参考

  1. Alarco´n S., Garc´ıa-Melia´ n J., Quaas A. Keller-Ossermann conditions for some elliptic problems with gradient terms// J. Differ. Equ. - 2012. - 252. - С. 886-914.
  2. Alarco´n S., Quaas A. Large viscosity solutions for some fully nonlinear equations// NoDEA Nonlinear Differ. Equ. Appl. - 2013. - 20. - С. 1453-1472.
  3. Ambrosio L., Soner H. M. Level set approach to mean curvature flow in arbitrary codimension// J. Differ. Geom. - 1996. - 43, № 4. - С. 693-737.
  4. Amendola M. E., Galise G., Vitolo A. Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators// Differ. Integral Equ. Appl. - 2013. - 26, № 7-8. - С. 845-866.
  5. Amendola M. E., Galise G., Vitolo A. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations// Discrete Contin. Dyn. Syst. - 2013. - Suppl. - С. 771-780.
  6. Bao J., Ji X. Necessary and sufficient conditions on solvability for Hessian inequalities// Proc. Am. Math. Soc. - 2010. - 138. - С. 175-188.
  7. Bao J., Ji X. Existence and nonexistence theorem for entire subsolutions of k-Yamabe type equations// J. Differ. Equ. - 2012. - 253. - С. 2140-2160.
  8. Bernstein S. R. Sur les equations du calcul des variations// Ann. Sci. E´ c. Norm. Supe´r. (4). - 1912. - 29. - С. 431-485.
  9. Birindelli I., Demengel F., Leoni F. Ergodic pairs for singular or degenerate fully nonlinear operators// arXiv: 1712.02671 [math.AP]. - 07.12.2017.
  10. Birindelli I., Galise G., Ishii H. A family of degenerate elliptic operators: maximum principle and its consequences// Ann. Inst. H. Poincare´. Anal. Non Line´aire. - 2018. - 35, № 2. - С. 417-441.
  11. Birindelli I., Galise G., Leoni F. Liouville theorems for a family of very degenerate elliptic nonlinear operators// Nonlinear Anal. - 2017. - 161. - С. 198-211.
  12. Boccardo L., Gallouet T., Vazquez J. L. Nonlinear elliptic equations in RN without growth restriction on the data// J. Differ. Equ. - 1993. - 105, № 2. - С. 334-363. ОБОБЩЕННЫЕ УСЛОВИЯ КЕЛЛЕРА-ОССЕРМАНА 83
  13. Boccardo L., Gallouet T., Vazquez J. L. Solutions of nonlinear parabolic equations without growth restrictions on the data// Electron. J. Differ. Equ. - 2001. - 2001, № 60. - С. 1-20.
  14. Brezis H. Semilinear equations in Rn without conditions at infinity// Appl. Math. Optim. - 1984. - 12.- С. 271-282.
  15. Caffarelli L. A., Cabre´ Fully nonlinear elliptic equations. - Providence: Am. Math. Soc., 1995.
  16. Caffarelli L. A., Li Y. Y., Nirenberg L. Some remarks on singular solutions of nonlinear elliptic equations. I// J. Fixed Point Theory Appl. - 2009. - 5. - С. 353-395.
  17. Capuzzo Dolcetta I., Leoni F., Porretta A. Ho¨lder estimates for degenerate elliptic equations with coercive Hamiltonians// Trans. Am. Math. Soc. - 2010. - 362, № 9. - С. 4511-4536.
  18. Capuzzo Dolcetta I., Leoni F., Vitolo A. Entire subsolutions of fully nonlinear degenerate elliptic equations// Bull. Inst. Math. Acad. Sin. (N.S.). - 2014. - 9, № 2. - С. 147-161.
  19. Capuzzo Dolcetta I., Leoni F., Vitolo A. On the inequality F (x, D2u) f (u)+ g(u)|Du|q // Math. Ann. - 2016. - 365, № 1-2. - С. 423-448.
  20. Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial differential equations// Bull. Am. Math. Soc. - 1992. - 27, № 1. - С. 1-67.
  21. D’Ambrosio L., Mitidieri E. A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities// Adv. Math. - 2010. - 224. - С. 967-1020.
  22. Demengel F., Goubet O. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations// Commun. Pure Appl. Anal. - 2013. - 12, № 2. - С. 621-645.
  23. Diaz G. A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller-Ossermann condition// Math. Ann. - 2012. - 353.- С. 145-159.
  24. Esteban M. G., Felmer P. L., Quaas A. Super-linear elliptic equations for fully nonlinear operators without growth restrictions for the data// Proc. Edinb. Math. Soc. (2). - 2010. - 53, № 1. - С. 125-141.
  25. Felmer P. L., Quaas A., Sirakov B. Solvability of nonlinear elliptic equations with gradient terms// J. Differ. Equ. - 2013. - 254, № 11. - С. 4327-4346.
  26. Galise G. Maximum principles, entire solutions and removable singularities of fully nonlinear second order equations. - Ph.D. Thesis, Salerno, 2011/2012.
  27. Galise G., Vitolo A. Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity// Int. J. Differ. Equ. - 2011. - Article ID 453727.
  28. Giga Y. Surface evolution equations. A level set approach. - Basel: Birkha¨user Verlag, 2006.
  29. Hartman P. Ordinary differential equations. - New York-London: Wiley, 1964.
  30. Harvey R., Lawson Jr B. Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry// arXiv: 1303.1117 - 05.03.2013.
  31. Jin Q., Li Y. Y., Xu H. Nonexistence of positive solutions for some fully nonlinear elliptic equations// Methods Appl. Anal. - 2005. - 12. - С. 441-449.
  32. Keller J. B. On solutions of Δu = f (u)// Commun. Pure Appl. Math. - 1957. - 10. - С. 503-510.
  33. Labutin D. A. Removable singularities for fully nonlinear elliptic equations// Arch. Ration. Mech. Anal. - 2000. - 155, № 3. - С. 201-214.
  34. Lasry J.-M., Lions P.-L. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem// Math. Ann. - 1989. - 283. - С. 583-630.
  35. Leoni F. Nonlinear elliptic equations in RN with «absorbing» zero order terms// Adv. Differ. Equ. - 2000. - 5. - С. 681-722.
  36. Leoni F., Pellacci B. Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data// J. Evol. Equ. - 2006. - 6. - С. 113-144.
  37. Nagumo M. U¨ ber die differential gleichung y// = f (x, y, y/)// Proc. Phys.-Math. Soc. Japan. - 1937. - 19. - С. 861-866.
  38. Oberman A., Silvestre L. The Dirichlet problem for the convex envelope// Trans. Am. Math. Soc. - 2011. - 363, № 11. - С. 5871-5886.
  39. Osserman R. On the inequality Δu f (u)// Pacific J. Math. - 1957. - 7. - С. 1141-1147.
  40. Porretta A. Local estimates and large solutions for some elliptic equations with absorption// Adv. Differ. Equ. - 2004. - 9, № 3-4. - С. 329-351.
  41. Sha J.-P. Handlebodies and p-convexity// J. Differ. Geom. - 1987. - 25. - С. 353-361.
  42. Wu H. Manifolds of partially positive curvature// Indiana Univ. Math. J. - 1987. - 36. - С. 525-548.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».