Generalized Keller-Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations
- 作者: Capuzzo Dolcetta I1, Leoni F1, Vitolo A2
-
隶属关系:
- Sapienza Universita` di Roma
- Universita` di Salerno
- 期: 卷 64, 编号 1 (2018): Differential and Functional Differential Equations
- 页面: 74-85
- 栏目: New Results
- URL: https://journals.rcsi.science/2413-3639/article/view/347225
- DOI: https://doi.org/10.22363/2413-3639-2018-64-1-74-85
- ID: 347225
如何引用文章
全文:
详细
作者简介
I Capuzzo Dolcetta
Sapienza Universita` di Roma
Email: capuzzo@mat.uniroma1.it
Rome, Italy
F Leoni
Sapienza Universita` di Roma
Email: leoni@mat.uniroma1.it
Rome, Italy
A Vitolo
Universita` di Salerno
Email: vitolo@unisa.it
Fisciano, Italy
参考
- Alarco´n S., Garc´ıa-Melia´ n J., Quaas A. Keller-Ossermann conditions for some elliptic problems with gradient terms// J. Differ. Equ. - 2012. - 252. - С. 886-914.
- Alarco´n S., Quaas A. Large viscosity solutions for some fully nonlinear equations// NoDEA Nonlinear Differ. Equ. Appl. - 2013. - 20. - С. 1453-1472.
- Ambrosio L., Soner H. M. Level set approach to mean curvature flow in arbitrary codimension// J. Differ. Geom. - 1996. - 43, № 4. - С. 693-737.
- Amendola M. E., Galise G., Vitolo A. Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators// Differ. Integral Equ. Appl. - 2013. - 26, № 7-8. - С. 845-866.
- Amendola M. E., Galise G., Vitolo A. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations// Discrete Contin. Dyn. Syst. - 2013. - Suppl. - С. 771-780.
- Bao J., Ji X. Necessary and sufficient conditions on solvability for Hessian inequalities// Proc. Am. Math. Soc. - 2010. - 138. - С. 175-188.
- Bao J., Ji X. Existence and nonexistence theorem for entire subsolutions of k-Yamabe type equations// J. Differ. Equ. - 2012. - 253. - С. 2140-2160.
- Bernstein S. R. Sur les equations du calcul des variations// Ann. Sci. E´ c. Norm. Supe´r. (4). - 1912. - 29. - С. 431-485.
- Birindelli I., Demengel F., Leoni F. Ergodic pairs for singular or degenerate fully nonlinear operators// arXiv: 1712.02671 [math.AP]. - 07.12.2017.
- Birindelli I., Galise G., Ishii H. A family of degenerate elliptic operators: maximum principle and its consequences// Ann. Inst. H. Poincare´. Anal. Non Line´aire. - 2018. - 35, № 2. - С. 417-441.
- Birindelli I., Galise G., Leoni F. Liouville theorems for a family of very degenerate elliptic nonlinear operators// Nonlinear Anal. - 2017. - 161. - С. 198-211.
- Boccardo L., Gallouet T., Vazquez J. L. Nonlinear elliptic equations in RN without growth restriction on the data// J. Differ. Equ. - 1993. - 105, № 2. - С. 334-363. ОБОБЩЕННЫЕ УСЛОВИЯ КЕЛЛЕРА-ОССЕРМАНА 83
- Boccardo L., Gallouet T., Vazquez J. L. Solutions of nonlinear parabolic equations without growth restrictions on the data// Electron. J. Differ. Equ. - 2001. - 2001, № 60. - С. 1-20.
- Brezis H. Semilinear equations in Rn without conditions at infinity// Appl. Math. Optim. - 1984. - 12.- С. 271-282.
- Caffarelli L. A., Cabre´ Fully nonlinear elliptic equations. - Providence: Am. Math. Soc., 1995.
- Caffarelli L. A., Li Y. Y., Nirenberg L. Some remarks on singular solutions of nonlinear elliptic equations. I// J. Fixed Point Theory Appl. - 2009. - 5. - С. 353-395.
- Capuzzo Dolcetta I., Leoni F., Porretta A. Ho¨lder estimates for degenerate elliptic equations with coercive Hamiltonians// Trans. Am. Math. Soc. - 2010. - 362, № 9. - С. 4511-4536.
- Capuzzo Dolcetta I., Leoni F., Vitolo A. Entire subsolutions of fully nonlinear degenerate elliptic equations// Bull. Inst. Math. Acad. Sin. (N.S.). - 2014. - 9, № 2. - С. 147-161.
- Capuzzo Dolcetta I., Leoni F., Vitolo A. On the inequality F (x, D2u) f (u)+ g(u)|Du|q // Math. Ann. - 2016. - 365, № 1-2. - С. 423-448.
- Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial differential equations// Bull. Am. Math. Soc. - 1992. - 27, № 1. - С. 1-67.
- D’Ambrosio L., Mitidieri E. A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities// Adv. Math. - 2010. - 224. - С. 967-1020.
- Demengel F., Goubet O. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations// Commun. Pure Appl. Anal. - 2013. - 12, № 2. - С. 621-645.
- Diaz G. A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller-Ossermann condition// Math. Ann. - 2012. - 353.- С. 145-159.
- Esteban M. G., Felmer P. L., Quaas A. Super-linear elliptic equations for fully nonlinear operators without growth restrictions for the data// Proc. Edinb. Math. Soc. (2). - 2010. - 53, № 1. - С. 125-141.
- Felmer P. L., Quaas A., Sirakov B. Solvability of nonlinear elliptic equations with gradient terms// J. Differ. Equ. - 2013. - 254, № 11. - С. 4327-4346.
- Galise G. Maximum principles, entire solutions and removable singularities of fully nonlinear second order equations. - Ph.D. Thesis, Salerno, 2011/2012.
- Galise G., Vitolo A. Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity// Int. J. Differ. Equ. - 2011. - Article ID 453727.
- Giga Y. Surface evolution equations. A level set approach. - Basel: Birkha¨user Verlag, 2006.
- Hartman P. Ordinary differential equations. - New York-London: Wiley, 1964.
- Harvey R., Lawson Jr B. Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry// arXiv: 1303.1117 - 05.03.2013.
- Jin Q., Li Y. Y., Xu H. Nonexistence of positive solutions for some fully nonlinear elliptic equations// Methods Appl. Anal. - 2005. - 12. - С. 441-449.
- Keller J. B. On solutions of Δu = f (u)// Commun. Pure Appl. Math. - 1957. - 10. - С. 503-510.
- Labutin D. A. Removable singularities for fully nonlinear elliptic equations// Arch. Ration. Mech. Anal. - 2000. - 155, № 3. - С. 201-214.
- Lasry J.-M., Lions P.-L. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem// Math. Ann. - 1989. - 283. - С. 583-630.
- Leoni F. Nonlinear elliptic equations in RN with «absorbing» zero order terms// Adv. Differ. Equ. - 2000. - 5. - С. 681-722.
- Leoni F., Pellacci B. Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data// J. Evol. Equ. - 2006. - 6. - С. 113-144.
- Nagumo M. U¨ ber die differential gleichung y// = f (x, y, y/)// Proc. Phys.-Math. Soc. Japan. - 1937. - 19. - С. 861-866.
- Oberman A., Silvestre L. The Dirichlet problem for the convex envelope// Trans. Am. Math. Soc. - 2011. - 363, № 11. - С. 5871-5886.
- Osserman R. On the inequality Δu f (u)// Pacific J. Math. - 1957. - 7. - С. 1141-1147.
- Porretta A. Local estimates and large solutions for some elliptic equations with absorption// Adv. Differ. Equ. - 2004. - 9, № 3-4. - С. 329-351.
- Sha J.-P. Handlebodies and p-convexity// J. Differ. Geom. - 1987. - 25. - С. 353-361.
- Wu H. Manifolds of partially positive curvature// Indiana Univ. Math. J. - 1987. - 36. - С. 525-548.
补充文件

